Biochemistry (Moscow)

, 73:420 | Cite as

Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells

  • M. Bayliak
  • D. Gospodaryov
  • H. Semchyshyn
  • V. LushchakEmail author


The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers’ yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.

Key words

Saccharomyces cerevisiae 3-amino-1,2,4-triazole catalase glucose-6-phosphate dehydrogenase 





protein carbonyls


glucose-6-phosphate dehydrogenase


glutathione reductase


isocitrate dehydrogenase


lactate dehydrogenase


phenylmethylsulfonyl fluoride


reactive oxygen species


superoxide dismutase




  1. 1.
    Bartosz, G. (2004) The Second Face of Oxygen. Free Radicals in Nature [in Polish], Wydawnictwo Naukowe PWN, Warsaw.Google Scholar
  2. 2.
    Ruis, H., and Koller, F. (1997) in Oxidative Stress and the Molecular Biology of Antioxidant Defenses (Scandalios, J. G., ed.) Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N. Y., pp. 273–308.Google Scholar
  3. 3.
    Lushchak, O., Bagnyukova, T., and Lushchak, V. (2003) Ukr. Biochem. J., 75, 45–50.Google Scholar
  4. 4.
    Lushchak, V., Semchyshyn, H., Mandryk, S., and Lushchak, O. (2005) Arch. Biochem. Biophys., 441, 35–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Bagnyukova, T. V., Storey, K. B., and Lushchak, V. I. (2005) Comp. Biochem. Physiol., B142, 335–341.Google Scholar
  6. 6.
    Bayliak, M., Semchyshyn, H., and Lushchak, V. (2006) Biochemistry (Moscow), 71, 1013–1020.CrossRefGoogle Scholar
  7. 7.
    Semchyshyn, H., Dylyovyj, M., and Lushchak, V. (2002) Ukr. Biochem. J., 74, 34–41.Google Scholar
  8. 8.
    Lushchak, V. I., and Gospodaryov, D. V. (2005) Cell Biol. Int., 29, 187–192.PubMedCrossRefGoogle Scholar
  9. 9.
    Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005) Biochem. Biophys. Res. Commun., 338, 1739–1744.PubMedCrossRefGoogle Scholar
  10. 10.
    Putnam, C. D., Arvai, A. S., Bourne, Y., and Tainer, J. A. (2000) J. Mol. Biol., 296, 295–309.PubMedCrossRefGoogle Scholar
  11. 11.
    Tripathi, G., Wiltshire, C., Macaskill, S., Tournu, H., Budge, S., and Brown, A. J. P. (2002) EMBO J., 21, 5448–5456.PubMedCrossRefGoogle Scholar
  12. 12.
    Lushchak, V. I. (1998) Biochem. Mol. Biol. Int., 44, 425–431.PubMedGoogle Scholar
  13. 13.
    Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  14. 14.
    Costa, V., and Moradas-Ferreira, P. (2001) Molec. Aspects Med., 22, 217–246.CrossRefGoogle Scholar
  15. 15.
    Izawa, S., Inoue, Y., and Kimura, A. (1996) Biochem. J., 320, 61–67.PubMedGoogle Scholar
  16. 16.
    Kowaltowski, A. J., Vercesi, A. E., Rhee, S. G., and Netto, L. E. (2000) FEBS Lett., 437, 177–182.CrossRefGoogle Scholar
  17. 17.
    Ueda, M., Kinoshita, H., Yoshida, H., Kamasawa, N., Osumi, M., and Tanaka, A. (2003) FEMS Microbiol. Lett., 219, 93–98.PubMedCrossRefGoogle Scholar
  18. 18.
    Barja de Quiroga, G., Lopez-Torres, M., and Perez-Campo, R. (1989) Comp. Biochem. Physiol., C94, 391–398.Google Scholar
  19. 19.
    Perez-Campo, R., Lopez-Torres, M., Rojas, C., Cadenas, S., and Barja de Quiroga, G. (1993) Mechanisms Ageing Devel., 67, 115–127.CrossRefGoogle Scholar
  20. 20.
    Bagnyukova, T. V., Vasylkiv, O. Yu., Storey, K. B., and Lushchak, V. I. (2005) Brain Res., 1052, 180–186.PubMedCrossRefGoogle Scholar
  21. 21.
    Hawkes, T. R., Thomas, P. G., Edwards, L. S., Rayner, S. J., and Wilkinson, K. W. (1995) Biochem. J., 306, 385–397.PubMedGoogle Scholar
  22. 22.
    Benjamin, P. M., Wu, J. I., Mitchell, A. P., and Magasanik, B. (1989) Mol. Gen. Genet., 217, 370–377.PubMedCrossRefGoogle Scholar
  23. 23.
    Kanazawa, S., Driscoll, M., and Struhl, K. (1988) Mol. Cell Biol., 8, 664–673.PubMedGoogle Scholar
  24. 24.
    Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., and Marton, M. J. (2001) Mol. Cell. Biol., 21, 4347–4368.PubMedCrossRefGoogle Scholar
  25. 25.
    Yin, Z., Stead, D., Selway, L., Walker, J., Riba-Garcia, I., Mclnerney, T., Gaskell, S., Oliver, S. G., Cash, P., and Brown, A. J. P. (2004) Proteomics, 4, 2425–2436.PubMedCrossRefGoogle Scholar
  26. 26.
    Anderson, R. M., Latorre-Esteves, M., Neves, A. R., Lavu S., Medvedik, O., Taylor, C., Howitz, K. T., Santos, H., and Sinclair, D. A. (2003) Science, 302, 2124–2126.PubMedCrossRefGoogle Scholar
  27. 27.
    Sinclair, D., Mills, K., and Guarente, L. (1998) Annu. Rev. Microbiol., 52, 533–560.PubMedCrossRefGoogle Scholar
  28. 28.
    Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V. D. (2000) Cell, 123, 655–667.CrossRefGoogle Scholar
  29. 29.
    Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K. U. (2004) Curr. Opin. Microbiol., 7, 655–660.PubMedCrossRefGoogle Scholar
  30. 30.
    Demple, B. (1991) Annu. Rev. Genet., 25, 315–337.PubMedCrossRefGoogle Scholar
  31. 31.
    Gospodaryov, D., Bayliak, M., and Lushchak, V. (2005) Ukr. Biochem. J., 77, 54–60.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • M. Bayliak
    • 1
  • D. Gospodaryov
    • 1
  • H. Semchyshyn
    • 1
  • V. Lushchak
    • 1
    Email author
  1. 1.Department of BiochemistryVassyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine

Personalised recommendations