Advertisement

Biochemistry (Moscow)

, 73:332 | Cite as

Brain cathepsin B cleaves a caspase substrate

  • A. A. Yakovlev
  • A. Yu. Gorokhovatsky
  • M. V. Onufriev
  • I. P. Beletsky
  • N. V. GulyaevaEmail author
Article

Abstract

We show that an enzyme exists in rat brain capable of cleaving the caspase-3 specific peptide substrate Ac-DEVD-AMC at low pH. The enzyme shows properties of a cysteine protease and is localized, predominantly, in lysosomes. We have purified this enzyme from rat brain and identified it by MALDI-TOF MS. The enzyme possessing “acidic” DEVDase activity in rat brain appears to be cathepsin B. It remains obscure, whether cathepsin B participates in cleavage of caspase-3 substrates in vivo. We suggest that under certain conditions (e.g. in hypoxia) cathepsin B participates in cleavage of caspase-3 substrates in brain cells.

Key words

caspase-3 cathepsin B Ac-DEVD-AMC 

Abbreviations

AMC

7-amino-4-methylcoumarin

CA-074

N-[L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl]-L-isoleucyl-L-proline

DTT

dithiothreitol

MALDI-TOF MS

matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry

References

  1. 1.
    Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.Google Scholar
  2. 2.
    Hengartner, M. O. (2000) Nature, 407, 770–776.PubMedCrossRefGoogle Scholar
  3. 3.
    Skulachev, V. P. (2002) Ann. N. Y. Acad. Sci., 959, 214–327.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson, C. B. (1995) Science, 267, 1456–1462.PubMedCrossRefGoogle Scholar
  5. 5.
    Thornberry, N. A., and Lazebnik, Y. (1998) Science, 281, 1312–1316.PubMedCrossRefGoogle Scholar
  6. 6.
    Filchenkov, A. A. (2003) Biochemistry (Moscow), 68, 365–376.CrossRefGoogle Scholar
  7. 7.
    Oppenheim, R. W. (1991) Annu. Rev. Neurosci., 14, 453–501.PubMedCrossRefGoogle Scholar
  8. 8.
    Salvesen, G. S. (2002) Cell Death Differ., 9, 3–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Troy, C. M., and Salvesen, G. S. (2002) J. Neurosci. Res., 69, 145–150.PubMedCrossRefGoogle Scholar
  10. 10.
    Stennicke, H. R., and Salvesen, G. S. (2000) Meth. Enzymol., 322, 91–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M. (1995) Cell, 81, 801–809.PubMedCrossRefGoogle Scholar
  12. 12.
    Thornberry, N. A., Chapman, K. T., and Nicholson, D. W. (2000) Meth. Enzymol., 322, 100–110.PubMedCrossRefGoogle Scholar
  13. 13.
    Stennicke, H. R., and Salvesen, G. S. (1997) J. Biol. Chem., 272, 25719–25723.PubMedCrossRefGoogle Scholar
  14. 14.
    Bizat, N., Hermel, J. M., Humbert, S., Jacquard, C., Creminon, C., Escartin, C., Saudou, F., Krajewski, S., Hantraye, P., and Brouillet, E. (2003) J. Biol. Chem., 278, 43245–43253.PubMedCrossRefGoogle Scholar
  15. 15.
    Blomgren, K., Zhu, C., Wang, X., Karlsson, J. O., Leverin, A. L., Bahr, B. A., Mallard, C., and Hagberg, H. (2001) J. Biol. Chem., 276, 10191–10198.PubMedCrossRefGoogle Scholar
  16. 16.
    Benchoua, A., Braudeau, J., Reis, A., Couriaud, C., and Onteniente, B. (2004) J. Cerebr. Blood Flow Metab., 24, 1272–1279.Google Scholar
  17. 17.
    Canu, N., Tufi, R., Serafino, A. L., Amadoro, G., Ciotti, M. T., and Calissano, P. (2005) J. Neurochem., 92, 1228–1242.PubMedCrossRefGoogle Scholar
  18. 18.
    Popovic, T., Puizdar, V., Ritonja, A., and Brzin, J. (1996) J. Chromatogr. B Biomed. Appl., 681, 251–262.PubMedCrossRefGoogle Scholar
  19. 19.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  20. 20.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Analyt. Chem., 68, 850–858.CrossRefGoogle Scholar
  21. 21.
    Yakovlev, A. A., Onufriev, M. V., Stepanichev, M. Yu., Braun, K., and Gulyaeva, N. V. (2001) Neirokhimiya, 18, 41–43.Google Scholar
  22. 22.
    Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Nyman, M., and Whittaker, V. P. (1963) Biochem. J., 87, 248–255.PubMedGoogle Scholar
  24. 24.
    Lipton, P. (1999) Physiol. Rev., 79, 1431–1568.PubMedGoogle Scholar
  25. 25.
    Robertson, G. S., Crocker, S. J., Nicholson, D. W., and Schulz, J. B. (2000) Brain Pathol., 10, 283–292.PubMedCrossRefGoogle Scholar
  26. 26.
    Unal-Cevik, I., Kilinc, M., Can, A., Gursoy-Ozdemir, Y., and Dalkara, T. (2004) Stroke, 35, 2189–2194.PubMedCrossRefGoogle Scholar
  27. 27.
    Castino, R., Bellio, N., Nicotra, G., Follo, C., Trincheri, N. F., and Isidoro, C. (2007) Free Radic. Biol. Med., 42, 1305–1316.PubMedCrossRefGoogle Scholar
  28. 28.
    Blomgran, R., Zheng, L., and Stendahl, O. (2007) J. Leukoc. Biol., 81, 1213–1223.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Nierop, K., Muller, F. J., Stap, J., van Noorden, C. J., van Eijk, M., and de Groot, C. (2006) J. Histochem. Cytochem., 54, 1425–1435.PubMedCrossRefGoogle Scholar
  30. 30.
    Clement, M. V., Ponton, A., and Pervaiz, S. (1998) FEBS Lett., 440, 13–18.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Yakovlev
    • 1
    • 2
  • A. Yu. Gorokhovatsky
    • 3
  • M. V. Onufriev
    • 1
  • I. P. Beletsky
    • 2
  • N. V. Gulyaeva
    • 1
    Email author
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Institute of Bioorganic Chemistry, Pushchino BranchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations