Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 3, pp 261–272 | Cite as

Interaction of APE1 and other repair proteins with DNA duplexes imitating intermediates of DNA repair and replication

  • N. S. Dyrkheeva
  • S. N. Khodyreva
  • O. I. LavrikEmail author
Article

Abstract

Interactions of APE1 (human apurinic/apyrimidinic endonuclease 1) and DNA polymerase β with various DNA structures imitating intermediates of DNA repair and replication were investigated by gel retardation and photoaffinity labeling. Photoaffinity labeling of APE1 and DNA polymerase β was accomplished by DNA containing photoreactive group at the 3′-end in mouse embryonic fibroblast (MEF) cell extract or for purified proteins. On the whole, modification efficiency was the same for MEF-extract proteins and for purified APE1 and DNA polymerase β depending on the nature of the 5′-group of a nick/gap in the DNA substrate. Some of DNA duplexes used in this work can be considered as short-patch (DNA with the 5′-phosphate group in the nick/gap) or long-patch (DNA containing 5′-sugar phosphate or 5′-flap) base excision repair (BER) intermediates. Other DNA duplexes (3′-recessed DNA and DNA with the 5′-hydroxyl group in the nick/gap) have no relation to intermediates forming in the course of BER. As shown by both methods, APE1 binds with the highest efficiency to DNA substrate containing 5′-sugar phosphate group in the nick/gap, whereas DNA polymerase β binds to DNA duplex with a mononucleotide gap flanked by the 5′-p group. When APE1 and DNA polymerase β are both present, a ternary complex APE1-DNA polymerase β-DNA is formed with the highest efficiency with DNA product of APE1 endonuclease activity and with DNA containing 5′-flap or mononucleotide-gapped DNA with 5′-p group. It was found that APE1 stimulates DNA synthesis catalyzed by DNA polymerase β, and a human X-ray repair cross-complementing group 1 protein (XRCC1) stimulates APE1 3′–5′ exonuclease activity on 3′-recessed DNA duplex.

Key words

APE1 base excision repair photoaffinity labeling 

Abbreviations

AP site

apurinic/apyrimidinic site

AP-dsDNA

double-strand DNA containing AP site in the middle of one of strands

AP-ssDNA

single-strand DNA containing AP site in the middle of strand

APE1

human apurinic/apyrimidinic endonuclease 1

BER

base excision repair

β polymerase

DNA polymerase β

FAPdCTP (FAPdCMP)

exo-N-[2-N-(N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl)-aminoethyl]-2′-deoxycytidine-5′-triphosphate (monophosphate)

MEF extract

mouse embryonic fibroblast cell extract

tetrahydrofuran or F

3′-hydroxy-2′-hydroxymethyltetrahydrofuran

5′-pF

5′-tetrahydrofuran phosphate

XRCC1

human X-ray repair cross-complementing group 1 protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindahl, T. (2000) Mutat. Res., 462, 129–135.PubMedCrossRefGoogle Scholar
  2. 2.
    Memislogu, A., and Samson, L. (2000) Mutat. Res., 451, 39–51.CrossRefGoogle Scholar
  3. 3.
    Krokan, H. E., Standal, R., and Slupphaug, G. (1997) Biochemistry, 68, 255–285.Google Scholar
  4. 4.
    Lantsov, V. A. (1998) Mol. Biol., 32, 757–772.Google Scholar
  5. 5.
    Wilson, D. M., III, and Barsky, D. (2001) Mutat. Res., 484, 283–307.Google Scholar
  6. 6.
    Matsumoto, Y., and Kim, K. (1995) Science, 269, 699–702.PubMedCrossRefGoogle Scholar
  7. 7.
    Piersen, C. E., Prasad, R., Wilson, S. H., and Lloyd, R. S. (1996) J. Biol. Chem., 271, 17811–17815.PubMedCrossRefGoogle Scholar
  8. 8.
    Klungland, A., and Lindahl, T. (1997) EMBO J., 16, 3341–3348.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson, S. H., and Kunkel, T. A. (2001) Nature Struct. Biol., 7, 176–178.Google Scholar
  10. 10.
    Hill, J. W., Hazra, T. K., Izumi, T., and Mitra, S. (2001) Nucleic Acids Res., 29, 430–438.PubMedCrossRefGoogle Scholar
  11. 11.
    Vidal, A. E., Hickson, I. D., Boiteux, S., and Radicella, J. P. (2001) Nucleic Acids Res., 29, 1285–1292.PubMedCrossRefGoogle Scholar
  12. 12.
    Bennet, R. A. O., Wilson, D. M., III, Wong, D., and Demple, B. (1997) Proc. Natl. Acad. Sci. USA, 94, 7166–7169.CrossRefGoogle Scholar
  13. 13.
    Wong, D., deMott, M. S., and Demple, B. (2003) J. Biol. Chem., 278, 36242–36249.PubMedCrossRefGoogle Scholar
  14. 14.
    Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Nucleic Acids Res., 33, 1222–1229.PubMedCrossRefGoogle Scholar
  15. 15.
    Ranalli, T. A., Tom, S., and Bambara, R. A. (2002) J. Biol. Chem., 277, 41715–41724.PubMedCrossRefGoogle Scholar
  16. 16.
    Singhal, R. K., Prasad, R., and Wilson, S. H. (1995) J. Biol. Chem., 270, 949–957.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans, A. R., Limp-Foster, M., and Kelley, M. R. (2000) Mutat. Res., 461, 83–108.PubMedGoogle Scholar
  18. 18.
    Chagovetz, A. M., Sweasy, J. B., and Preston, B. D. (1997) J. Biol. Chem., 272, 27501–27504.PubMedCrossRefGoogle Scholar
  19. 19.
    Chou, K.-M., and Cheng, Y.-C. (2002) Nature, 415, 655–659.PubMedCrossRefGoogle Scholar
  20. 20.
    Chou, K.-M., and Cheng, Y.-C. (2003) J. Biol. Chem., 278, 18289–18296.PubMedCrossRefGoogle Scholar
  21. 21.
    Wilson, D. M., III (2003) J. Mol. Biol., 330, 1027–1037.PubMedCrossRefGoogle Scholar
  22. 22.
    Dyrkheeva, N. S., Lomzov, A. A., Pyshnyi, D. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Biochim. Biophys. Acta, 1764, 699–706.PubMedGoogle Scholar
  23. 23.
    Cistulli, C., Lavrik, O. I., Prasad, R., Hou, E., and Wilson, S. H. (2004) DNA Repair, 3, 581–591.PubMedGoogle Scholar
  24. 24.
    Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) Biochem. Biophys. Res. Commun., 300, 182–187.PubMedCrossRefGoogle Scholar
  25. 25.
    Dyrkheeva, N. S., Khodyreva, S. N., Sukhanova, M. V., Safronov, I. V., Dezhurov, S. V., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 200–210.CrossRefGoogle Scholar
  26. 26.
    Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) J. Biol. Chem., 276, 25541–25548.PubMedCrossRefGoogle Scholar
  27. 27.
    Drachkova, I. A., Petruseva, I. O., Safronov, I. V., Zakharenko, A. L., Shishkin, G. V., Lavrik, O. I., and Khodyreva, S. N. (2001) Bioorg. Khim., 27, 179–204.Google Scholar
  28. 28.
    Marsin, S., Vidal, A. E., Sossou, M., Menissier-de Murcia, J., Le Page, F., Boiteux, S., de Murcia, G., and Radicella, J. P. (2003) J. Biol. Chem., 278, 44068–44074.PubMedCrossRefGoogle Scholar
  29. 29.
    Dezhurov, S. V., Khodyreva, S. N., Plekhanova, E. S., and Lavrik, O. I. (2005) Bioconj. Chem., 16, 215–222.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  31. 31.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  32. 32.
    Chou, K.-M., Kukhanova, M., and Cheng, Y.-C. (2000) J. Biol. Chem., 275, 31009–31015.PubMedCrossRefGoogle Scholar
  33. 33.
    Dyrkheeva, N. S., Khodyreva, S. N., and Lavrik, O. I. (2007) Mol. Biol., 41, 450–466.CrossRefGoogle Scholar
  34. 34.
    Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. (2000) Nature, 430, 451–455.Google Scholar
  35. 35.
    Mol, C. D., Hosfield, D. J., and Tainer, J. A. (2000) Mutat. Res., 460, 211–229.PubMedGoogle Scholar
  36. 36.
    Kane, C. M., and Linn, S. (1981) J. Biol. Chem., 256, 3405–3414.PubMedGoogle Scholar
  37. 37.
    Beernink, P. T., Segelke, B. W., Hadi, M. Z., Erzberger, J. P., Wilson, D. M., III, and Rupp, B. (2001) J. Mol. Biol., 307, 1023–1034.PubMedCrossRefGoogle Scholar
  38. 38.
    Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Biochemistry (Moscow), 71, 736–748.CrossRefGoogle Scholar
  39. 39.
    Wilson, D. M., III, Takeshita, M., and Demple, B. (1997) Nucleic Acids Res., 25, 933–939.PubMedCrossRefGoogle Scholar
  40. 40.
    Masuda, Y., Bennet, R. A. O., and Demple, B. (1998) J. Biol. Chem., 273, 30360–30365.PubMedCrossRefGoogle Scholar
  41. 41.
    Erzberger, J. P., Barsky, D., Scharer, O. D., Colvin, M. E., and Wilson, D. M., III. (1998) Nucleic Acids Res., 26, 2771–2778.PubMedCrossRefGoogle Scholar
  42. 42.
    Strauss, P. R., Beard, W. A., Patterson, T. A., and Wilson, S. H. (1997) J. Biol. Chem., 272, 1302–1307.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu, Y., Prasad, R., Beard, W. A., Kedar, P. S., Hou, E. W., Shock, D. D., and Wilson, S. H. (2007) J. Biol. Chem., 282, 13532–13541.PubMedCrossRefGoogle Scholar
  44. 44.
    Prasad, R., Beard, W. A., Strauss, P. R., and Wilson, S. H. (1998) J. Biol. Chem., 273, 15263–15270.PubMedCrossRefGoogle Scholar
  45. 45.
    Singhal, R. K., and Wilson, S. H. (1993) J. Biol. Chem., 268, 15906–15911.PubMedGoogle Scholar
  46. 46.
    Kubota, Y., Nash, R. A., Klungland, A., Schar, P., Barnes, D. E., and Lindahl, T. (1996) EMBO J., 15, 6662–6670.PubMedGoogle Scholar
  47. 47.
    Vidal, A. E., Boiteux, S., Hickson, I. D., and Radicella, J. P. (2001) EMBO J., 2, 6530–6539.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. S. Dyrkheeva
    • 1
  • S. N. Khodyreva
    • 1
  • O. I. Lavrik
    • 1
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations