Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 2, pp 231–233 | Cite as

Interfacial atom pair analysis

  • Yong-Chao Li
  • Zong-Hao ZengEmail author
Article
  • 27 Downloads

Abstract

The relations of the binding free energies in a dataset of 69 protein complexes with the numbers of interfacial atom pairs, as well as with the atomic distances of the pairs, are analyzed. It is found that the interfacial main-chain atom pairs contribute more to the correlation than the interfacial side chain atom pairs do, and the polar atom pairs contribute more than the non-polar atom pairs do. Interfacial atom pairs with atomic distance in the range of 6–12 Å are the most important to explain the differences in binding free energies in the datasets.

Key words

interfacial atom pairs statistical potentials complementarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, H., and Zhou, Y. Q. (2002) Protein Sci., 11, 2714–2726.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu, S., Zhang, C., Zhou, H. Y., and Zhou, Y. Q. (2004) Proteins: Structure, Function, and Bioinformatics, 56, 93–101.CrossRefGoogle Scholar
  3. 3.
    Jiang, L., Gao, Y., Mao, F., Liu, Z., and Lai, L. (2002) Proteins, 46, 190–196.CrossRefPubMedGoogle Scholar
  4. 4.
    Sippl, M. J. (1990) J. Mol. Biol., 213, 859–883.CrossRefPubMedGoogle Scholar
  5. 5.
    Marsden, P. M., Puvanendrampillai, D., Mitchell, J. B. O., and Glen, R. C. (2004) Org. Biomol. Chem., 22, 3267–3273.CrossRefGoogle Scholar
  6. 6.
    Mitchell, J. B. O., Roman, A. L., Alexander, A., and Janet, M. T. (1999) J. Comput. Chem., 20, 1165–1176.CrossRefGoogle Scholar
  7. 7.
    Mitchell, J. B. O., Roman, A. L., Alexander, A., Mark, J. F., and Janet, M. T. (1999) J. Comput. Chem., 20, 1177–1185.CrossRefGoogle Scholar
  8. 8.
    Sippl, M. J. (1995) Curr. Opin. Struct. Biol., 5, 229–235.CrossRefPubMedGoogle Scholar
  9. 9.
    Moont, G., Gabb, H. A., and Sternberg, M. J. E. (1999) Proteins: Structure, Function, and Genetics, 35, 364–373.CrossRefGoogle Scholar
  10. 10.
    Robert, C. H., and Janin, J. (1998) J. Mol. Biol., 283, 1037–1047.CrossRefPubMedGoogle Scholar
  11. 11.
    Thomas, P. D., and Dill, K. A. (1996) J. Mol. Biol., 257, 457–469.CrossRefPubMedGoogle Scholar
  12. 12.
    Samudrala, R., and Moult, J. (1998) J. Mol. Biol., 275, 895–916.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee, C. H., Saksela, K., Mirza, U. A., Chait, B. T., and Kuriyan, J. (1996) Cell, 85, 931–942.CrossRefPubMedGoogle Scholar
  14. 14.
    Chothia, C., and Janin, J. (1975) Nature, 256, 705–708.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu, D., Lin, S. L., and Nussinov, R. (1997) J. Mol. Biol., 265, 68–84.CrossRefPubMedGoogle Scholar
  16. 16.
    Ma, X. H., Wang, C. X., Li, C. H., and Chen, W. Z. (2002) Protein Eng., 15, 677–681.CrossRefPubMedGoogle Scholar
  17. 17.
    Matthew, J. B. (1985) Annu. Rev. Biophys. Biophys. Chem., 14, 387–417.CrossRefPubMedGoogle Scholar
  18. 18.
    Vajda, S., Weng, Z. P., Rosenfld, R., and DelLisi, C. (1994) Biochemistry, 33, 13977–13988.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang, C., Vasmatzis, G., Cornette, J. L., and DeLisi, C. (1997) J. Mol. Biol., 267, 707–726.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations