Biochemistry (Moscow)

, Volume 73, Issue 2, pp 164–170 | Cite as

Isolation and oligomeric composition of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens

  • T. V. TikhonovaEmail author
  • E. S. Slutskaya
  • A. A. Filimonenkov
  • K. M. Boyko
  • S. Yu. Kleimenov
  • P. V. Konarev
  • K. M. Polyakov
  • D. I. Svergun
  • A. A. Trofimov
  • V. G. Khomenkov
  • R. A. Zvyagilskaya
  • V. O. Popov


A new procedure for isolation of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens increasing significantly the yield of the purified enzyme is presented. The enzyme is isolated from the soluble fraction of the cell extract as a hexamer, as shown by gel filtration chromatography and small angle X-ray scattering analysis. Thermostability of the hexameric form of the nitrite reductase is characterized in terms of thermoinactivation and thermodenaturation.

Key words

cytochrome c nitrite reductase isolation oligomeric composition thermostability thermodenaturation 



bacterial cytochrome c-containing nitrite reductases coded by nrfA gene


small angle X-ray scattering


cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, J. (2002) FEMS Microbiol. Rev., 26, 285–309.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu, M.-C., Peck, H. D., Jr., Abou-Jaoude, A., Chippaux, M., and LeGall, J. (1981) FEMS Microbiol. Lett., 10, 333–337.CrossRefGoogle Scholar
  3. 3.
    Darwin, A., Hussain, H., Griffiths, L., Grove, J., Sambongi, Y., Busby, S., and Cole, J. (1993) Mol. Microbiol., 9, 1255–1265.CrossRefPubMedGoogle Scholar
  4. 4.
    Kajie, S., and Anraku, Y. (1986) Eur. J. Biochem., 154, 457–463.CrossRefPubMedGoogle Scholar
  5. 5.
    Angove, H. C., Cole, J. A., Richardson, D. J., and Butt, J. N. (2002) J. Biol. Chem., 277, 23374–23381.CrossRefPubMedGoogle Scholar
  6. 6.
    Bamford, V. A., Angrove, H. C., Seward, H. E., Thomson, A. J., Cole, J. A., Butt, J. N., Hemmings, A. M., and Richardson, D. J. (2002) Biochemistry, 41, 2921–2931.CrossRefPubMedGoogle Scholar
  7. 7.
    Gwyer, J. D., Angove, H. C., Richardson, D. J., and Butt, J. N. (2004) Bioelectrochemistry, 63, 43–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu, M. C., and Peck, H. D. (1981) J. Biol. Chem., 256, 13159–13164.PubMedGoogle Scholar
  9. 9.
    Costa, C., Moura, J. J. G., Moura, I., Liu, M. Y., Peck, H. D., Jr., LeGall, J., Wang, Y., and Huynh, B. H. (1990) J. Biol. Chem., 265, 143132–14387.Google Scholar
  10. 10.
    Pereira, I. C., Abreu, I. A., Xavier, A. V., LeGall, J., and Teixeira, M. (1996) Biochem. Biophys. Res. Commun., 224, 611–618.CrossRefPubMedGoogle Scholar
  11. 11.
    Cunha, C. A., Macieira, S., Dias, J. M., Almeida, G., Goncalves, L. L., Costa, C., Lampreia, J., Huber, R., Moura, J. J. G., Moura, I., and Romao, M. J. (2003) J. Biol. Chem., 278, 17455–17465.CrossRefPubMedGoogle Scholar
  12. 12.
    Almeida, M. G., Macieira, S., Goncalves, L. L., Huber, R., Cunha, C. A., Romao, M. J., Costa, C., Lampreia, J., Moura, J. J. G., and Moura, I. (2003) Eur. J. Biochem., 270, 3904–3915.CrossRefPubMedGoogle Scholar
  13. 13.
    Pereira, C., LeGall, J., Xavier, A. V. M., and Teixeira, M. (2000) Biochim. Biophys. Acta, 1481, 119–130.CrossRefPubMedGoogle Scholar
  14. 14.
    Rodrigues, M. L., Oliveira, T., Matias, P. M., Martins, I. C., Valente, F. M. A., Pereira, I. A. C., and Archer, M. (2006) Acta Crystallogr. F, Struct. Biol. Cryst. Commun., 62, 565–568.CrossRefGoogle Scholar
  15. 15.
    Rodrigues, M. L., Oliveira, T., Pereira, I. A. C., and Archer, M. (2006) EMBO J., 25, 5951–5960.CrossRefPubMedGoogle Scholar
  16. 16.
    Einsle, O., Stach, P., Messerschmidt, A., Simon, J., Kroger, A., Huber, R., and Kroneck, P. M. H. (2000) J. Biol. Chem., 275, 39608–39610.CrossRefPubMedGoogle Scholar
  17. 17.
    Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P. M. H., and Neese, F. (2002) J. Amer. Chem. Soc., 124, 11737–11745.CrossRefGoogle Scholar
  18. 18.
    Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G. P., Bartunik, H. D., Huber, R., and Kroneck, P. M. H. (1999) Nature, 400, 476–480.CrossRefPubMedGoogle Scholar
  19. 19.
    Schumacher, W., Hole, U., and Kroneck, P. M. H. (1994) Biochem. Biophys. Res. Commun., 205, 911–916.CrossRefPubMedGoogle Scholar
  20. 20.
    Stach, P., Einsle, O., Schumacher, W., Kurun, E., and Kroneck, P. M. H. (2000) J. Inorg. Biochem., 79, 381–385.CrossRefPubMedGoogle Scholar
  21. 21.
    Rudolf, M., Einsle, O., Neese, F., and Kroneck, P. M. H. (2002) Biochem. Soc. Trans., 30, 649–653.CrossRefPubMedGoogle Scholar
  22. 22.
    Clarke, T. A., Hemmings, A. M., Burlat, B., Butt, J. N., Cole, J. A., and Richardson, D. J. (2006) Biochem. Soc. Trans., 34, 141–145.Google Scholar
  23. 23.
    Tikhonova, T. V., Slutsky, A., Antipov, A. N., Boyko, K. M., Polyakov, K. M., Sorokin, D. Y., Zvyagilskaya, R. A., and Popov, V. O. (2006) Biochim. Biophys. Acta, 1764, 715–723.PubMedGoogle Scholar
  24. 24.
    Boyko, K. M., Polyakov, K. M., Tikhonova, T. V., Slutsky, A., Antipov, A. N., Zvyagilskaya, R. A., Bourenkov, G. P., Popov, A. N., Lamzin, V. S., and Popov, V. O. (2006) Acta Crystallogr. Sect. F, F62, 215–217.CrossRefGoogle Scholar
  25. 25.
    Bradford, M. (1976) Analyt. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  26. 26.
    Nicolas, D. J. D., and Nason, A. (1957) Meth. Enzymol., 3, 981–954.CrossRefGoogle Scholar
  27. 27.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  28. 28.
    Kremneva, E., Nikolaeva, O., Maytum, R., Arutyunyan, A. M., Kleimenov, S. Yu., Geeves, M. A., and Levitsky, D. I. (2006) FEBS J., 273, 588–600.CrossRefPubMedGoogle Scholar
  29. 29.
    Roessle, M. W., Klaering, R., Ristau, U., Robrahn, B., Jahn, D., Gehrmann, T., Konarev, P., Round, A., Fiedler, S., Hermes, C., and Svergun, D. (2007) J. Appl. Crystallogr., 40, 190–194.CrossRefGoogle Scholar
  30. 30.
    Konarev, P. V., Petoukhov, M. V., Volkov, V. V., and Svergun, D. I. (2006) J. Appl. Crystallogr., 39, 277–286.CrossRefGoogle Scholar
  31. 31.
    Svergun, D. I. (1992) J. Appl. Crystallogr., 25, 495–503.CrossRefGoogle Scholar
  32. 32.
    Svergun, D. I., Barbareto, C., and Koch, M. H. J. (1995) J. Appl. Crystallogr., 28, 768–773.CrossRefGoogle Scholar
  33. 33.
    Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) J. Appl. Crystallogr., 36, 1277–1282.CrossRefGoogle Scholar
  34. 34.
    Clarke, T. A., Dennison, V., Seward, H. E., Burlat, B., Cole, J. A., Hemmings, A. M., and Richardson, D. J. (2004) J. Biol. Chem., 279, 41333–41339.CrossRefPubMedGoogle Scholar
  35. 35.
    Simon, J., Pisa, R., Stein, T., Eichler, R., Klimmek, O., and Gross, R. (2001) Eur. J. Biochem., 268, 5776–5782.CrossRefPubMedGoogle Scholar
  36. 36.
    Simon, J., Gross, R., Einsle, O., Kroneck, P. M. H., Kroger, A., and Klimmek, O. (2000) Mol. Microbiol., 35, 686–696.CrossRefPubMedGoogle Scholar
  37. 37.
    Yamada, S., Suruga, K., Ogawa, M., Hama, T., Satoh, T., Kawachi, R., Nishio, T., and Oku, T. (2002) Biosci. Biotechnol. Biochem., 66, 2044–2051.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • T. V. Tikhonova
    • 1
    Email author
  • E. S. Slutskaya
    • 1
  • A. A. Filimonenkov
    • 1
  • K. M. Boyko
    • 1
  • S. Yu. Kleimenov
    • 1
  • P. V. Konarev
    • 2
    • 3
  • K. M. Polyakov
    • 4
  • D. I. Svergun
    • 2
    • 3
  • A. A. Trofimov
    • 4
  • V. G. Khomenkov
    • 1
  • R. A. Zvyagilskaya
    • 1
  • V. O. Popov
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.European Molecular Biology Laboratory (EMBL)HamburgGermany
  4. 4.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations