Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 2, pp 156–163 | Cite as

5S rRNA-recognition module of CTC family proteins and its evolution

  • A. V. Korobeinikova
  • G. M. GongadzeEmail author
  • A. P. Korepanov
  • B. D. Eliseev
  • M. V. Bazhenova
  • M. B. Garber
Article

Abstract

The effects of amino acid replacements in the RNA-binding sites of homologous ribosomal proteins TL5 and L25 (members of the CTC family) on ability of these proteins to form stable complexes with ribosomal 5S RNA were studied. It was shown that even three simultaneous replacements of non-conserved amino acid residues by alanine in the RNA-binding site of TL5 did not result in noticeable decrease in stability of the TL5-5S rRNA complex. However, any replacement among five conserved residues in the RNA-binding site of TL5, as well as of L25 resulted in serious destabilization or complete impossibility of complex formation. These five residues form an RNA-recognition module in TL5 and L25. These residues are strictly conserved in proteins of the CTC family. However, there are several cases of natural replacements of these residues in TL5 and L25 homologs in Bacilli and Cyanobacteria, which are accompanied by certain changes in the CTC-binding site of 5S rRNAs of the corresponding organisms. CTC proteins and specific fragments of 5S rRNA of Enterococcus faecalis and Nostoc sp. were isolated, and their ability to form specific complexes was tested. It was found that these proteins formed specific complexes only with 5S rRNA of the same organism. This is an example of coevolution of the structures of two interacting macromolecules.

Key words

bacterial 5S rRNA-binding proteins CTC family proteins ribosome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gryaznova, O. I., Davydova, N. I., Gongadze, G. M., Jonsson, B. H., Garber, M. B., and Liljas, A. (1996) Biochimie, 78, 915–918.PubMedCrossRefGoogle Scholar
  2. 2.
    Fedorov, R., Meshcheryakov, V., Gongadze, G., Fomenkova, N., Nevskaya, N., Selmer, M., Laurberg, M., Kristensen, O., Al-Karadaghi, S., Liljas, A., Garber, M., and Nikonov, S. (2001) Acta Crystallogr. D, 57, 968–976.PubMedCrossRefGoogle Scholar
  3. 3.
    Benson, D. A., Karsch-Mizrashi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2004) Nucleic Acids Res., 32, 23–26.CrossRefGoogle Scholar
  4. 4.
    Frishman, D., Mokrejs, M., Kosykh, D., Kostenmuller, G., Kolesov, G., Zubrzycki, I., Gruber, C., Geier, B., Kaps, A., Albermann, K., Volz, A., Wagner, C., Fellenberg, M., Heumann, K., and Mewes, H. (2003) Nucleic Acids Res., 31, 207–211.PubMedCrossRefGoogle Scholar
  5. 5.
    Horne, J. R., and Erdmann, V. A. (1972) Mol. Gen. Genet., 119, 337–344.PubMedGoogle Scholar
  6. 6.
    Gongadze, G. M., Tishchenko, S. V., Sedelnikova, S. E., and Garber, M. B. (1993) FEBS Lett., 330, 46–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Harms, J., Schluenzen, F., Zarivash, R., Bashan, A., Gat, S., Agman, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) Cell, 107, 679–688.PubMedCrossRefGoogle Scholar
  8. 8.
    Douthwaite, S., Garrett, R. A., Wagner, R., and Feunteun, J. (1979) Nucleic Acids Res., 6, 2453–2470.PubMedCrossRefGoogle Scholar
  9. 9.
    Gongadze, G. M., Meshcheryakov, V. A., Serganov, A. A., Fomenkova, N. P., Mudrik, E. S., Jonsson, B.-H., Liljas, A., Nikonov, S. V., and Garber, M. B. (1999) FEBS Lett., 451, 51–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Hecker, M., and Volker, U. (1990) FEMS Microbiol. Ecol., 74, 197–214.CrossRefGoogle Scholar
  11. 11.
    Volker, U., Engelmann, S., Maul, B., Rithdorf, S., Volker, A., Schmid, R., Mach, H., and Hecker, M. (1994) Microbiology, 140, 741–752.PubMedCrossRefGoogle Scholar
  12. 12.
    Duche, O., Tremoulet, F., Glaser, P., and Labadie, J. (2002) Appl. Environ. Microbiol., 64, 1491–1498.CrossRefGoogle Scholar
  13. 13.
    Schmalisch, M., Langbein, I., and Stulke, J. (2002) J. Mol. Microbiol. Biotechnol., 4, 495–501.PubMedGoogle Scholar
  14. 14.
    Korepanov, A. P., Gongadze, G. M., and Garber, M. B. (2004) Biochemistry (Moscow), 69, 607–611.CrossRefGoogle Scholar
  15. 15.
    Stoldt, M., Wohnert, J., Gorlach, M., and Brown, I. R. (1998) EMBO J., 17, 6377–6384.PubMedCrossRefGoogle Scholar
  16. 16.
    Gongadze, G., Kashparov, I., Lorenz, S., Schroeder, W., Erdmann, V. A., Liljas, A., and Garber, M. (1996) FEBS Lett., 386, 260–262.PubMedCrossRefGoogle Scholar
  17. 17.
    Meshcheryakov, V., Gryaznova, O., Davydova, N., Mudrik, E., Perederina, A., Vasilenko, K., Gongadze, G., and Garber, M. (1997) Biochemistry (Moscow), 62, 537–542.Google Scholar
  18. 18.
    Gongadze, G. M., Korepanov, A. P., Stolboushkina, E. A., Zelinskaya, N. V., Korobeinikova, A. V., Ruzanov, M. V., Eliseev, B. D., Nikonov, O. S., Nikonov, S. V., Garber, M. B., and Lim, V. I. (2005) J. Biol. Chem., 280, 16151–16156.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu, M., and Steitz, T. (2000) Proc. Natl. Acad. Sci. USA, 97, 2023–2028.PubMedCrossRefGoogle Scholar
  20. 20.
    Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L., and Bubunenko, M. G. (2007) J. Mol. Biol., 366, 1199–1208.PubMedCrossRefGoogle Scholar
  21. 21.
    Studier, F. W., and Mofatt, B. A. (1986) J. Mol. Biol., 189, 113–130.PubMedCrossRefGoogle Scholar
  22. 22.
    Stoldt, M., Wohnert, J., Ohlenschlager, O., Gorlach, M., and Brown, L. R. (1999) EMBO J., 18, 6508–6521.PubMedCrossRefGoogle Scholar
  23. 23.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  24. 24.
    Nierhaus, K. H., and Dohme, F. (1979) Meth. Enzymol., 59, 443–449.PubMedCrossRefGoogle Scholar
  25. 25.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  26. 26.
    Serganov, A. A., Masquida, B., Westhof, E., Cachia, C., Portier, C., Garber, M., Ehresmann, B., and Ehresmann, C. (1996) RNA, 2, 1124–1138.PubMedGoogle Scholar
  27. 27.
    Draper, D. E., Deckman, I. C., and Vartikar, J. V. (1988) Meth. Enzymol., 164, 203–220.PubMedCrossRefGoogle Scholar
  28. 28.
    Draper, D. E. (1999) J. Mol. Biol., 293, 255–270.PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia-Garcia, C., and Draper, D. E. (2003) J. Mol. Biol., 331, 75–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Selmer, M., Dunham, C. M., Murphy, F. V., IV, Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006) Science, 313, 1935–1942.PubMedCrossRefGoogle Scholar
  31. 31.
    Szymanski, M., Barciszewska, M. Z., Erdmann, V. A., and Barciszewski, J. (2002) Nucleic Acids Res., 30, 176–178.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. V. Korobeinikova
    • 1
  • G. M. Gongadze
    • 1
    Email author
  • A. P. Korepanov
    • 1
  • B. D. Eliseev
    • 1
  • M. V. Bazhenova
    • 1
  • M. B. Garber
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations