Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 2, pp 139–148 | Cite as

Influence of cultivation conditions on spatial structure and functional activity of OmpF-like porin from outer membrane of Yersinia pseudotuberculosis

  • O. D. Novikova
  • T. I. VakorinaEmail author
  • V. A. Khomenko
  • G. N. Likhatskaya
  • N. Yu. Kim
  • V. I. Emelyanenko
  • S. M. Kuznetsova
  • T. F. Solov’eva
Article

Abstract

The influence of cultivation conditions of pseudotuberculosis bacteria on the spatial structure and the functional activity of nonspecific OmpF-like porin was studied by means of optical spectroscopy, scanning microcalorimetry, and bilayer lipid membrane technique. With this goal, porin samples isolated from microbial masses grown at different temperatures, nutrient medium densities, and growth phases were characterized. According to CD data, the porin samples under investigation represent β-sheet proteins. It was found that the protein isolated from the colonial culture of pseudotuberculosis bacteria grown at low temperature has the most compact structure. Using intrinsic protein fluorescence, it was shown that different conditions of pseudotuberculosis bacteria cultivation (temperature, medium, growth phase) led to the changes in spectral properties of porin fluorescence due to the redistribution of the contributions of tyrosine and different classes of tryptophan residues to the total protein emission. Heat inactivation of porin samples was studied using CD spectroscopy, intrinsic protein fluorescence, and scanning microcalorimetry. Spatial features of the porin samples were found to affect their functional activities. Considering all these data, it is possible to correlate the spatial structure and functional activity of porin samples isolated under different cultivation conditions of bacteria and the composition of the outer membrane lipid matrix.

Key words

nonspecific OmpF-like porins spatial structure thermostability functional activity lipid matrix 

Abbreviations

BLM

bilayer lipid membrane

DPG

diphosphatidylglycerol

LPE

lysophosphatidylethanolamine

LPh

logarithmic growth phase

NA

nutrient agar

NB

nutrient broth

NL

neutral lipids

OM

bacterial outer membrane

PE

phosphatidylethanolamine

PG

phosphatidylglycerol

PGPC

peptidoglycan-protein complexes

SPh

early stationary growth phase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marsh, D. (1993) in New Comprehensive Biochemistry (Watts, A., ed.) Elsevier, Amsterdam, pp. 41–66.Google Scholar
  2. 2.
    Selinsky, B. S. (1992) in Structure of Biological Membranes (Yeagle, P., ed.) CRC Press, Boca Raton, FL, pp. 603–651.Google Scholar
  3. 3.
    Wang, X., Bogdanov, M., and Dowhan, W. (2002) EMBO J., 21, 5673–5681.CrossRefPubMedGoogle Scholar
  4. 4.
    De Cock, H., Pasveer, M., Tomassen, J., and Bouveret, E. (2001) Eur. J. Biochem., 268, 865–875.CrossRefPubMedGoogle Scholar
  5. 5.
    Delcour, A. (1997) FEMS Microbiol. Lett., 151, 115–123.CrossRefPubMedGoogle Scholar
  6. 6.
    Buehler, L. K., Kusumoto, S., Zhang, H., and Rosenbusch, J. P. (1991) J. Biol. Chem., 266, 24446–24450.PubMedGoogle Scholar
  7. 7.
    Panikov, N. S. (1991) in Kinetics of Bacterial Growth (Zvyagintsev, D. G., ed.) [in Russian], Nauka, Moscow, pp. 211–221.Google Scholar
  8. 8.
    Brubacker, R. R. (1991) Clin. Microbiol. Rev., 4, 309–324.Google Scholar
  9. 9.
    Straley, S. C., and Perry, R. (1995) Trends Microbiol., 3, 310–317.CrossRefPubMedGoogle Scholar
  10. 10.
    Bengoechea, J. A., Dfas, R., and Moriyon, I. (1995) Infect. Immun., 64, 4891–4899.Google Scholar
  11. 11.
    Bengoechea, J. A., Brandenburg, K., Seydel, U., Dfas, R., and Moriyon, I. (1998) Microbiology, 144, 1517–1526.CrossRefPubMedGoogle Scholar
  12. 12.
    Baholdina, S. I., Krasikova, I. N., Shubin, F. N., Busoleva, L. S., and Solov’eva, T. F. (2001) Biochemistry (Moscow), 66, 415–421.CrossRefGoogle Scholar
  13. 13.
    Vostrikova, O. P., Lihatskaya, G. N., Novikova, O. D., and Solov’eva, T. F. (2000) Biol. Membr. (Moscow), 17, 399–409.Google Scholar
  14. 14.
    Schnaitman, C. A. (1970) J. Bacteriol., 104, 890–901.PubMedGoogle Scholar
  15. 15.
    Nurminen, M. (1985) in Methods for Molecular Characterization (Korhonen, N. K., ed.) Elsevier Science Publishers, N. Y., pp. 293–300.Google Scholar
  16. 16.
    Novikova, O. D., Fedoreeva, L. I., Khomenko, V. A., Portnyagina, O. Yu., Ermak, I. M., Lihatskaya, G. N., Moroz, S. V., Solov’eva, T. F., and Ovodov, Yu. S. (1993) Bioorg. Khim., 19, 536–547.Google Scholar
  17. 17.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  18. 18.
    Gal, E., Medyeshi, G., and Verezkei, L. (1982) Electrophoresis in Macromolecules Separation [Russian translation], Mir, Moscow, p. 157.Google Scholar
  19. 19.
    Tsai, C. M., and Frash, C. E. (1982) Analyt. Biochem., 119, 115–119.CrossRefPubMedGoogle Scholar
  20. 20.
    Dubois, M., Gilles, K. A., Hamilton, J. K., et al. (1956) Analyt. Chem., 28, 350–356.CrossRefGoogle Scholar
  21. 21.
    Markwel, M. A. K., Haas, S. M., Bieber, L. L., and Tolbert, N. E. (1978) Analyt. Biochem., 87, 206–210.CrossRefGoogle Scholar
  22. 22.
    Provencher, C. W., and Glocker, J. (1981) Biochemistry, 20, 34–37.CrossRefGoogle Scholar
  23. 23.
    Emelyanenko, V. I. (1991) GPS, 55, 587–593.Google Scholar
  24. 24.
    Burstein, T. A., Vedenkina, N. S., and Ivkova, M. N. (1973) Photochem. Photobiol., 18, 263–279.CrossRefPubMedGoogle Scholar
  25. 25.
    Marquardt, D. W. (1963) J. Soc. Indust. Appl. Math., 11, 431–441.CrossRefGoogle Scholar
  26. 26.
    Lihatskaya, G. N., Novikova, O. D., Solov’eva, T. F., and Ovodov, Yu. S. (1985) Biol. Membr. (Moscow), 2, 1219–1224.Google Scholar
  27. 27.
    Chehin, R., Iloro, I., Marcos, M. J., Villar, E., Shnyrov, V. L., and Arrondo, J. L. R. (1999) Biochemistry, 38, 1525–1530.CrossRefPubMedGoogle Scholar
  28. 28.
    Kazlauskaite, J., Young, A., Gardner, C. E., Macpherson, J. V., Venieb-Brayan, C., and Pinheiro, T. J. (2005) Biochem. Biophys. Res. Commun., 328, 292–305.CrossRefPubMedGoogle Scholar
  29. 29.
    Ven’yaminov, S. Yu., Kosih, V. G., Kholodkov, O. A., and Bur’yanov, Ya. I. (1990) Bioorg. Khim., 16, 47–51.Google Scholar
  30. 30.
    France, L. L., Kieleczawa, J. J., Dunn, J. J., Hind, G., and Sutherland, J. C. (1992) Biochim. Biophys. Acta, 1120, 59–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Damaschun, G., Damaschun, H., Gast, K., and Zirwer, D. (1998) Biochemistry (Moscow), 63, 259–275.Google Scholar
  32. 32.
    Pfeil, W. (1998) Biochemistry (Moscow), 63, 294–302.Google Scholar
  33. 33.
    Bogdanov, M., Umeda, M., and Dowhan, W. (1999) J. Biol. Chem., 274, 12339–12345.CrossRefPubMedGoogle Scholar
  34. 34.
    Kern, R., Joseleau-Petit, D., Chattopadtyay, K., and Richarme, G. (2001) Biochem. Biophys. Res. Commun., 289, 1268–1274.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • O. D. Novikova
    • 1
  • T. I. Vakorina
    • 1
    Email author
  • V. A. Khomenko
    • 1
  • G. N. Likhatskaya
    • 1
  • N. Yu. Kim
    • 1
  • V. I. Emelyanenko
    • 2
  • S. M. Kuznetsova
    • 2
  • T. F. Solov’eva
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations