Advertisement

Biochemistry (Moscow)

, Volume 73, Issue 1, pp 80–86 | Cite as

Investigation of enzymatic degradation of pectin polysaccharides under limiting conditions

  • N. Yu. SelivanovEmail author
  • I. V. Sorokina
  • O. G. Selivanova
  • O. I. Sokolov
  • V. V. Ignatov
Article

Abstract

The dynamics of changes in spectra of oligosaccharide fragments formed during enzymatic degradation of plant pectins at low enzyme/substrate ratio was studied. It is shown that degradation of deesterified pectin molecules is a discrete and determined process manifested in establishment of a stable polysaccharide spectrum. It is noted that introduction of chemical modifications into the polysaccharide substrate structure preserves the discreteness of the polymer molecule fragmentation but changes the spectrum of formed oligosaccharide fragments. It is supposed that degradation is defined by the spatial (three-dimensional) organization of the polysaccharide molecule.

Key words

plant polysaccharides pectin oligosaccharides enzymatic degradation pectinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Phytochemistry, 57, 929–967.CrossRefPubMedGoogle Scholar
  2. 2.
    Oosterveld, A., Beldman, G., Schols, H. A., and Voragen, A. G. J. (2000) Carbohydr. Res., 328, 185–197.CrossRefPubMedGoogle Scholar
  3. 3.
    Vidal, S., Doco, T., Williams, P., Pellerin, P., York, W. S., O’Neill, M. A., Glushka, J., Darvill, A. G., and Albersheim, P. (2000) Carbohydr. Res., 326, 277–294.CrossRefPubMedGoogle Scholar
  4. 4.
    Usov, A. I. (1993) Uspekhi Khim., 62, 1119–1144.Google Scholar
  5. 5.
    Cote, F., and Hahn, M. G. (1994) Plant. Mol. Biol., 12, 1379–1411.CrossRefGoogle Scholar
  6. 6.
    Spiro, M. D., Ridley, B. L., Eberhard, S., Kates, K. A., Mathieu, Y., O’Neill, M. A., Mohnen, D., Guern, J., Darvill, A., and Albersheim, P. (1998) Plant Physiol., 116, 1289–1298.CrossRefPubMedGoogle Scholar
  7. 7.
    Bretch, J. K., and Huber, D. J. (1988) Plant Physiol., 88, 1037–1041.CrossRefGoogle Scholar
  8. 8.
    Campbell, A. D., and Labavitch, J. M. (1991) Plant Physiol., 97, 706–713.CrossRefPubMedGoogle Scholar
  9. 9.
    Eberhard, S., Doubrava, N., Marfa, V., Mohnen, D., Southwick, A., Albersheim, P., and Darvill, A. (1989) Plant Cell, 1, 747–755.CrossRefPubMedGoogle Scholar
  10. 10.
    Marfa, V., Gollin, D., Eberhard, S., Mohnen, D., Albersheim, P., and Darvill, A. (1991) Plant J., 2, 217–225.CrossRefGoogle Scholar
  11. 11.
    Capodicasa, C., Vairo, D., Zabotina, O., McCartney, L., Caprari, C., Mattei, B., Manfredini, C., Aracri, B., Benen, J., Knox, J. P., de Lorenzo, G., and Cervone, F. (2004) Plant Physiol., 135, 1294–1304.CrossRefPubMedGoogle Scholar
  12. 12.
    Bellincampi, D., Salvi, G., deLorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A., and Albersheim, P. (1993) Plant J., 4, 207–213.CrossRefGoogle Scholar
  13. 13.
    Branca, C., deLorenzo, G., and Cervone, F. (1988) Physiol. Plant., 72, 499–504.CrossRefGoogle Scholar
  14. 14.
    Semenova, M. V., Grishutin, S. G., Gusakov, A. V., Okunev, O. N., and Sinitsin, A. P. (2003) Biochemistry (Moscow), 68, 559–569.CrossRefGoogle Scholar
  15. 15.
    Micheli, F. (2001) Trends Plant Sci., 6, 414–419.CrossRefPubMedGoogle Scholar
  16. 16.
    Wen, F., Zhu, Y., and Hawes, M. C. (1999) Plant Cell, 11, 1129–1140.CrossRefPubMedGoogle Scholar
  17. 17.
    Pilling, J., Willmitzer, L., and Fisahn, J. (2000) Planta, 210, 391–399.CrossRefPubMedGoogle Scholar
  18. 18.
    Limberg, G., Korner, R., Buchholt, H. C., Christensen, T. M. I. E., Roepstorff, P., and Mikkelsen, J. D. (2000) Carbohydr. Res., 327, 321–332.CrossRefPubMedGoogle Scholar
  19. 19.
    Limberg, G., Korner, R., Buchholt, H. C., Christensen, T. M. I. E., Roepstorff, P., and Mikkelsen, J. D. (2000) Carbohydr. Res., 327, 293–307.CrossRefPubMedGoogle Scholar
  20. 20.
    Schols, H. A., Vierhuis, E., Bakx, E. J., and Voragen, A. G. J. (1995) Carbohydr. Res., 275, 343–360.CrossRefPubMedGoogle Scholar
  21. 21.
    Naidu, G. S. N., and Panda, T. (1999) Enzyme Microbiol. Technol., 25, 116–124.CrossRefGoogle Scholar
  22. 22.
    Benen, J. A. E., van Alebeek, G. J. W. M., Voragen, A. G. J., and Visser, J. (2003) in Advances in Pectin and Pectinase Research (Voragen, A. G. J., Schols, H. A., and Visser, R., eds.) Kluwer Academic Publishers, Dordrecht, pp. 235–256.Google Scholar
  23. 23.
    Miller, L. G. (1959) Analyt. Chem., 31, 426–428.CrossRefGoogle Scholar
  24. 24.
    Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K. (2000) Appl. Microbiol. Biotechnol., 53, 732–735.CrossRefPubMedGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  26. 26.
    Ralet, M.-C., Dronnet, V., Buchholt, H. C., and Thibault, J.-F. (2001) Carbohydr. Res., 336, 117–125.CrossRefPubMedGoogle Scholar
  27. 27.
    Williats, W. G. T., McCartney, L., Mackie, W., and Knox, J.-P. (2001) Plant Mol. Biol., 47, 9–27.CrossRefGoogle Scholar
  28. 28.
    Thibault, J.-F., and Ralet, M.-C. (2003) in Advances in Pectin and Pectinase Research (Voragen, A. G. J., Schols, H. A., and Visser, R., eds.) Kluwer Academic Publishers, Dordrecht, pp. 91–106.Google Scholar
  29. 29.
    Williams, A., and Ibrahim, I. T. (1981) Chem. Rev., 1, 589–636.CrossRefGoogle Scholar
  30. 30.
    Olde Damink, L. H. H., Dijkstra, P. J., van Luyn, M. J. A., van Wachem, P. B., Nieuwenhuis, P., and Feijen, J. (1996) Biomaterials, 17, 765–773.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. Yu. Selivanov
    • 1
    Email author
  • I. V. Sorokina
    • 1
  • O. G. Selivanova
    • 1
  • O. I. Sokolov
    • 1
  • V. V. Ignatov
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations