Biochemistry (Moscow)

, Volume 73, Issue 1, pp 56–64 | Cite as

Molecular modeling studies of substrate binding by penicillin acylase

  • G. G. Chilov
  • O. V. Stroganov
  • V. K. ŠvedasEmail author


Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.

Key words

penicillin acylase substrate binding molecular modeling conformational flexibility 



molecular dynamics


penicillin acylase


penicillin G


penicillin G sulfoxide


Restricted Hartree-Fock method


root mean square deviation


root mean square fluctuation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2008_1008_MOESM1_ESM.pdf (515 kb)
Supplementary material, approximately 340 KB.


  1. 1.
    Rolinson, G. N., Batchelor, F. R., Butterworth, D., Cameron-Wood, J., Cole, M., Eustace, G. C., Hart, M. V., Richards, M., and Chain, E. B. (1960) Nature, 187, 236–237.CrossRefPubMedGoogle Scholar
  2. 2.
    Margolin, A. L., Švedas, V. K., and Berezin, I. V. (1980) Biochim. Biophys. Acta, 616, 283–289.PubMedGoogle Scholar
  3. 3.
    Roa, A., Castillon, M. P., Goble, M. L., Virden, R., and Garcia, J. L. (1995) Biochem. Biophys. Res. Commun., 206, 629–636.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruggink, A., Roos, E. C., and de Vroom, E. (1998) Org. Process Res. Dev., 2, 128–133.CrossRefGoogle Scholar
  5. 5.
    Švedas, V. K., Savchenko, M. V., Beltser, A. I., and Guranda, D. F. (1996) Ann. N.-Y. Acad. Sci., 799, 659–669.CrossRefPubMedGoogle Scholar
  6. 6.
    Guranda, D. T., van Langen, L. M., van Rantwijk, F., Sheldon, R. A., and Švedas, V. K. (2001) Tetrahedron: Asymmetry, 12, 1645–1650.CrossRefGoogle Scholar
  7. 7.
    Chilov, G. G., and Švedas, V. K. (2002) Can. J. Chem., 80, 699–707.CrossRefGoogle Scholar
  8. 8.
    Ferreira, J. S., Straathof, A. J. J., Franco, T. T., and van der Wielen, L. A. M. (2004) J. Mol. Catalysis B: Enzymatic, 27, 29–35.CrossRefGoogle Scholar
  9. 9.
    Chilov, G. G., Moody, H. M., Boesten, W. H. J., and Švedas, V. K. (2003) Tetrahedron: Asymmetry, 14, 2613–2617.CrossRefGoogle Scholar
  10. 10.
    Duggleby, H. J., Tolley, S. P., Hill, C. P., Dodson, E. J., Dodson, G., and Moody, P. C. (1995) Nature, 373, 264–268.CrossRefPubMedGoogle Scholar
  11. 11.
    Brannigan, J. A., Dodson, G., Duggleby, H. J., Moody, P. C., Smith, J. L., Tomchick, D. R., and Murzin, A. G. (1995) Nature, 378, 416–419.CrossRefPubMedGoogle Scholar
  12. 12.
    Done, S. H., Brannigan, J. A., Moody, P. C. E., and Hubbard, R. E. (1998) J. Mol. Biol., 284, 463–475.CrossRefPubMedGoogle Scholar
  13. 13.
    Alkema, W. B. L., Hensgens, C. M. H., Kroezinga, E. H., de Vries, E., Floris, R., van der Laan, J.-M., Dijkstra, B. W., and Janssen, D. B. (2000) Protein Eng., 13, 857–863.CrossRefPubMedGoogle Scholar
  14. 14.
    McVey, C. E., Walsh, M. A., Dodson, G. G., Wilson, K. S., and Brannigan, J. (2001) J. Mol. Biol., 313, 139–150.CrossRefPubMedGoogle Scholar
  15. 15.
    Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995) Comp. Phys. Comm., 91, 43–56.CrossRefGoogle Scholar
  16. 16.
    Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Mod., 7, 306–317.Google Scholar
  17. 17.
    Jorgensen, W. L., and Tirado-Rives, J. (1988) J. Am. Chem. Soc., 110, 1657–1666.CrossRefGoogle Scholar
  18. 18.
    Jorgensen, W. L., Chandrasekhar, J. D., Madura, R., Impey, W., and Klein, M. L. (1983) J. Chem. Phys., 79, 926–935.CrossRefGoogle Scholar
  19. 19.
    Feenstra, K. A., Hess, B., and Berendsen, H. J. C. (1999) J. Comp. Chem., 20, 786–798.CrossRefGoogle Scholar
  20. 20.
    Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997) J. Comp. Chem., 18, 1463–1472.CrossRefGoogle Scholar
  21. 21.
    Tironi, I. G., Sperb, R., Smith, P. E., and van Gunsteren, W. F. (1995) J. Chem. Phys., 102, 5451–5459.CrossRefGoogle Scholar
  22. 22.
    Shmidt, M. W., Baldringe, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., and Windus, T. L. (1993) J. Comp. Chem., 14, 1347–1363.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Bayly, C. L., Cieplak, P., Cornell, W. D., and Kollman, P. A. (1993) J. Phys. Chem., 97, 10269–10280.CrossRefGoogle Scholar
  25. 25.
    Stroganov, O. V., Chilov, G. G., and Švedas, V. K. (2003) J. Mol. Structure (THEOCHEM), 631, 117–125.CrossRefGoogle Scholar
  26. 26.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W., Belew, R. K., and Olson, A. J. (1998) J. Comp. Chem., 19, 1639–1662.CrossRefGoogle Scholar
  27. 27.
    Chilov, G. G., Sidorova, A. V., and Švedas, V. K. (2007) Biochemistry (Moscow), 72, 495–500.CrossRefGoogle Scholar
  28. 28.
    Chilov, G. G., Guranda, D. T., and Švedas, V. K. (2000) Biochemistry (Moscow), 65, 963–966.Google Scholar
  29. 29.
    Alkema, W. B. L., Prins, A. K., de Vries, E., and Janssen, D. B. (2002) Biochem. J., 365, 303–309.CrossRefPubMedGoogle Scholar
  30. 30.
    Alkema, W. B. L., Dijkhuis, A.-J., de Vries, E., and Janssen, D. B. (2002) Eur. J. Biochem., 269, 2093–2100.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • G. G. Chilov
    • 1
  • O. V. Stroganov
    • 2
  • V. K. Švedas
    • 1
    • 2
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations