Advertisement

Biochemistry (Moscow)

, Volume 72, Issue 13, pp 1478–1490 | Cite as

Effect of molecular crowding on the enzymes of glycogenolysis

  • N. A. ChebotarevaEmail author
Review

Abstract

Cell cytoplasm contains high concentrations of macromolecules occupying a significant part of the cell volume (crowding conditions). According to modern concepts, crowding has a pronounced effect on the rate and equilibrium of biochemical reactions and stimulates the formation of more compact structures. This review considers different aspects of the crowding effect in vivo and in vitro, its role in regulation of cell volume, the effect of crowding on various interactions, such as protein-ligand and protein-protein interactions, as well as on protein denaturation, conformation transitions of macromolecules, and supramolecular structure formation. The influence of crowding arising from the presence of high concentrations of osmolytes on the interactions of the enzymes of glycogenolysis has been demonstrated. It has been established that, in accordance with predictions of crowding theory, trimethylamine N-oxide (TMAO) and betaine highly stimulate the association of phosphorylase kinase (PhK) and its interaction with glycogen. However, high concentrations of proline, betaine, and TMAO completely suppress the formation of PhK complex with phosphorylase b (Phb). The protective effect of osmolyte-induced molecular crowding on Phb denaturation by guanidine hydrochloride is shown. The influence of crowding on the interaction of Phb with allosteric inhibitor FAD has been revealed. The results show that, under crowding conditions, the equilibrium of the isomerization of Phb shifts towards a more compact dimeric state with decreased affinity for FAD.

Key words

glycogen phosphorylase b kinase phosphorylase molecular crowding osmolytes protein association protein denaturation 

Abbreviations

PEG

polyethylene glycol

Phb

glycogen phosphorylase b

PhK

phosphorylase kinase

TMAO

trimethylamine N-oxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fulton, A. B. (1982) Cell, 30, 345–347.PubMedGoogle Scholar
  2. 2.
    Zimmerman, S. B., and Trach, S. O. (1991) J. Mol. Biol., 222, 599–620.PubMedGoogle Scholar
  3. 3.
    Ellis, R. J., and Minton, A. P. (2003) Nature, 425, 27–28.PubMedGoogle Scholar
  4. 4.
    Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002) Science, 298, 1209–1213.PubMedGoogle Scholar
  5. 5.
    Zimmerman, S. B., and Minton, A. P. (1993) Annu. Rev. Biophys. Biomol. Struct., 22, 27–65.PubMedGoogle Scholar
  6. 6.
    Minton, A. P. (2001) J. Biol. Chem., 276, 10577–10580.PubMedGoogle Scholar
  7. 7.
    Ellis, R. J. (2001) TRENDS Biochem. Sci., 26, 597–604.PubMedGoogle Scholar
  8. 8.
    Ghebotareva, N. A., Kurganov, B. I., and Livanova, N. B. (2004) Biochemistry (Moscow), 69, 1239–1251.Google Scholar
  9. 9.
    Hall, D., and Minton, A. P. (2003) Biochim. Biophys. Acta, 1649, 127–139.PubMedGoogle Scholar
  10. 10.
    Minton, A. P. (1981) Biopolymers, 20, 2093–2120.Google Scholar
  11. 11.
    Minton, A. P. (1983) Mol. Cell. Biochem., 55, 119–140.PubMedGoogle Scholar
  12. 12.
    Wills, P. R., and Winzor, D. J. (1993) Biopolymers, 33, 1627–1629.Google Scholar
  13. 13.
    Wills, P. R, Comper, W. D., and Winzor, D. J. (1993) Arch. Biochem. Biophys., 300, 206–212.PubMedGoogle Scholar
  14. 14.
    Winzor, C. L., Winzor, D. J., Paleg, L. G., Jones, G. P., and Naidu, B. P. (1992) Arch. Biochem. Biophys., 296, 102–107.PubMedGoogle Scholar
  15. 15.
    Winzor, D. J., and Wills, P. R. (1995) in Protein—Solvent Interactions (Gregory, R. B., ed.) Marcel Dekker, N. Y., pp. 483–520.Google Scholar
  16. 16.
    Winzor, D. J., and Wills, P. R. (1995) Biophys. Chem., 57, 103–110.PubMedGoogle Scholar
  17. 17.
    Davis-Searles, P. R., Saunders, A. J., Erie, D. A., Winzor, D. J., and Pielak, G. J. (2001) Annu. Rev. Biophys. Biomol. Struct., 30, 271–306.PubMedGoogle Scholar
  18. 18.
    Minton, A. P. (2005) J. Pharm. Sci., 94, 1668–1675.PubMedGoogle Scholar
  19. 19.
    Rivas, G., Ferrone, F., and Herzfeld, J. (2004) EMBO Rep., 5, 23–27.PubMedGoogle Scholar
  20. 20.
    Minton, A. P., Colclasure, G. C., and Parker, J. C. (1992) Proc. Natl. Acad. Sci. USA, 89, 10504–10506.PubMedGoogle Scholar
  21. 21.
    Ellis, R. J., and Minton, A. P. (2006) Biol. Chem., 387, 485–497.PubMedGoogle Scholar
  22. 22.
    Al-Habori, M. (2001) Int. J. Biochem. Cell Biol., 33, 844–864.PubMedGoogle Scholar
  23. 23.
    Minton, A. P. (2000) Curr. Opin. Struct. Biol., 10, 34–39.PubMedGoogle Scholar
  24. 24.
    Chamberlin, M. E., and Strange, K. (1989) Am. J. Physiol., 257, F1–F10.Google Scholar
  25. 25.
    Sarkadi, B., and Parker, J. C. (1991) Biochim. Biophys. Acta, 1071, 407–427.PubMedGoogle Scholar
  26. 26.
    Hoffmann, E. K., and Dunham, P. B. (1995) Int. Rev. Cytol., 161, 173–262.PubMedGoogle Scholar
  27. 27.
    Strange, K., Emma, F., and Jackson, P. S. (1996) Am. J. Physiol., 270, C711–C730.PubMedGoogle Scholar
  28. 28.
    Al-Habori, M. (1994) Int. J. Biochem., 26, 319–334.PubMedGoogle Scholar
  29. 29.
    Eveloff, J. L., and Warnock, D. G. (1987) Am. J. Physiol., 252, F1–F10.PubMedGoogle Scholar
  30. 30.
    Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M., and Plomp, P. J. A. M. (1990) J. Biol. Chem., 265, 955–959.PubMedGoogle Scholar
  31. 31.
    Peak, M., Al-Habori, M., and Agius, L. (1992) Biochem. J., 282, 797–805.PubMedGoogle Scholar
  32. 32.
    Meijer, A. J., Baquet, A., Gustafson, L., van Woerkom, G. M., and Hue, I. (1992) J. Biol. Chem., 267, 5823–5828.PubMedGoogle Scholar
  33. 33.
    Haussinger, D., Hallbrucker, C., vom Dahl, S., Decker, S., Schweizer, U., Lang, F., and Gerok, W. (1991) FEBS Lett., 283, 70–72.PubMedGoogle Scholar
  34. 34.
    Stoll, B., Gerok, W., Lang, F., and Haussinger, D. (1992) Biochem. J., 287, 217–222.PubMedGoogle Scholar
  35. 35.
    Minton, A. P. (1997) Curr. Opin. Biotech., 8, 65–69.PubMedGoogle Scholar
  36. 36.
    Garner, M. M., and Burg, M. B. (1994) Am. J. Physiol., 266, C877–C892.PubMedGoogle Scholar
  37. 37.
    Parker, J. C., and Colclasure, G. C. (1992) Mol. Cell Biochem., 114, 9–11.PubMedGoogle Scholar
  38. 38.
    Ellis, R. J. (1997) Curr. Biol., 7, R531–R533.PubMedGoogle Scholar
  39. 39.
    Van den Berg, B., Wain, R., Dobson, C. M., and Ellis R. J. (2000) EMBO J., 19, 3870–3875.PubMedGoogle Scholar
  40. 40.
    Zimmerman, S. B. (1993) Biochim. Biophys. Acta, 1216, 175–185.PubMedGoogle Scholar
  41. 41.
    Bray, D. (1998) Annu. Rev. Biophys. Biomol. Struct., 27, 59–75.PubMedGoogle Scholar
  42. 42.
    Shearwin, K., Nanhua, C., and Masters, C. (1989) Biochem. Int., 19, 723–729.PubMedGoogle Scholar
  43. 43.
    Shearwin, K., Nanhua, C., and Masters, C. (1990) Biochem. Int., 21, 53–60.PubMedGoogle Scholar
  44. 44.
    Yancey, P. H., and Somero, G. N. (1979) Biochem. J., 183, 317–323.PubMedGoogle Scholar
  45. 45.
    Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982) Science, 217, 1214–1222.PubMedGoogle Scholar
  46. 46.
    Wang, A., and Bolen, D. W. (1997) Biochemistry, 36, 9101–9108.PubMedGoogle Scholar
  47. 47.
    Bolen, D. W., and Baskakov, I. V. (2001) J. Mol. Biol., 310, 955–963.PubMedGoogle Scholar
  48. 48.
    Burg, M. B., and Peters, E. M. (1997) Am. J. Physiol., 273, F1048–F1053.PubMedGoogle Scholar
  49. 49.
    Yancey, P. H. (2005) J. Exp. Biol., 208, 2819–2830.PubMedGoogle Scholar
  50. 50.
    Yancey, P. H., Fyfe-Johnson, A. L., Kelly, R. H., Walker, V. P., and Aunon, M. T. (2001) J. Exp. Zool., 289, 172–176.PubMedGoogle Scholar
  51. 51.
    Lin, T. Y., and Timasheff, S. N. (1994) Biochemistry, 33, 12695–12701.PubMedGoogle Scholar
  52. 52.
    Qu, Y., and Bolen, D. W. (2003) Biochemistry, 36, 9101–9108.Google Scholar
  53. 53.
    Singh, R., Haque, I., and Ahmad, F. (2005) J. Biol. Chem., 280, 11035–11042.PubMedGoogle Scholar
  54. 54.
    Qu, Y., Bolen, C. L., and Bolen, D. W. (1998) Proc. Natl. Acad. Sci. USA, 95, 9268–9279.PubMedGoogle Scholar
  55. 55.
    Palmer, H. R., Bedford, J. J., Leader, J. P., and Smith, R. A. J. (2000) J. Biol. Chem., 36, 27708–27711.Google Scholar
  56. 56.
    Eronina, T. B., Ghebotareva, N. A., and Kurganov, B. I. (2005) Biochemistry (Moscow), 70, 1020–1026.Google Scholar
  57. 57.
    Cayley, S., and Record, M. T. (2003) Biochemistry, 42, 12596–12609.PubMedGoogle Scholar
  58. 58.
    Cayley, S., and Record, M. T., Jr. (2004) J. Mol. Recogn., 17, 488–496.Google Scholar
  59. 59.
    Baskakov, I. V., and Bolen, D. W. (1998) Biophys. J., 74, 2658–2665.PubMedGoogle Scholar
  60. 60.
    Baskakov, I. V., and Bolen, D. W. (1998) J. Biol. Chem., 273, 4831–4834.PubMedGoogle Scholar
  61. 61.
    Liu, Y., and Bolen, D. W. (1995) Biochemistry, 34, 12884–12891.PubMedGoogle Scholar
  62. 62.
    Mashino, T., and Fridovich, I. (1987) Arch. Biochem. Biophys., 258, 356–360.PubMedGoogle Scholar
  63. 63.
    Meng, F.-G., Park, Y.-D., and Zhou, H.-M. (2001) Int. J. Biochem. Cell Biol., 33, 701–709.PubMedGoogle Scholar
  64. 64.
    Satoro, M. M., Liu, Y., Khan, S. M. A., Hou, L.-X., and Bolen, D. W. (1992) Biochemistry, 31, 5278–5283.Google Scholar
  65. 65.
    Yancey, P. H., and Somero, G. N. (1980) J. Exp. Zool., 212, 205–213.Google Scholar
  66. 66.
    Zou, Q., Bennion, B. J., Daggett, V., and Murphy, K. P. (2002) J. Am. Chem. Soc., 124, 1192–1202.PubMedGoogle Scholar
  67. 67.
    Poon, J., Bailey, M., Winzor, D. J., Davidson, B. E., and Sawyer, W. H. (1997) Biophys. J., 73, 3257–3264.PubMedGoogle Scholar
  68. 68.
    Patel, C. N., Noble, S. M., Weatherly, G. T., Tripathy, A., Winzor, D. J., and Pielak, G. J. (2002) Prot. Sci., 11, 997–1003.Google Scholar
  69. 69.
    Wills, P. R., Jacobsen, M. P., and Winzor, D. J. (1996) Biopolymers, 38, 119–130.Google Scholar
  70. 70.
    Lonhienne, T. G. A., and Winzor, D. J. (2001) Biochemistry, 40, 9618–9622.PubMedGoogle Scholar
  71. 71.
    Lonhienne, T. G. A., and Winzor, D. J. (2002) Biochemistry, 41, 6897–6901.PubMedGoogle Scholar
  72. 72.
    Jacobsen, M. P., Wills, P. R., and Winzor, D. J. (1996) Biochemistry, 35, 13173–13179.PubMedGoogle Scholar
  73. 73.
    Hall, D. R., Jacobsen, M. P., and Winzor, D. J. (1995) Biophys. Chem., 57, 47–54.PubMedGoogle Scholar
  74. 74.
    Wills, P. R., Hall, D. R., and Winzor, D. J. (2000) Biophys. Chem., 84, 217–225.PubMedGoogle Scholar
  75. 75.
    Timasheff, S. N. (1993) Annu. Rev. Biophys. Biochem. Struct., 22, 67–97.Google Scholar
  76. 76.
    Baskakov, I. V., and Bolen, D. W. (1998) Biophys. J., 74, 2666–2673.PubMedGoogle Scholar
  77. 77.
    Timasheff, S. N. (1998) Proc. Natl. Acad. Sci. USA, 95, 7363–7367.PubMedGoogle Scholar
  78. 78.
    Timasheff, S. N. (2002) Biochemistry, 41, 13473–13482.PubMedGoogle Scholar
  79. 79.
    Timasheff, S. N. (2002) Proc. Natl. Acad. Sci. USA, 99, 9721–9726.PubMedGoogle Scholar
  80. 80.
    Qu, Y., and Bolen, D. W. (2002) Biophys. Chem., 101, 155–165.PubMedGoogle Scholar
  81. 81.
    Despa, F., Fernandez, A., and Berry, R. S. (2004) Phys. Rev. Lett., 93, 228104.PubMedGoogle Scholar
  82. 82.
    Despa, F., Orgill, D. P., and Lee, R. C. (2005) Ann. N. Y. Acad. Sci., 1066, 54–66.PubMedGoogle Scholar
  83. 83.
    Parsegian, V. A., Rand, R. P., and Rau, D. C. (2000) Proc. Natl. Acad. Sci. USA, 97, 3987–3992.PubMedGoogle Scholar
  84. 84.
    Barford, D., and Johnson, L. N. (1989) Nature, 340, 606–616.Google Scholar
  85. 85.
    Chebotareva, N. A., Kurganov, B. I., Pekel, N. D., and Beresovskii, V. M. (1986) Biochem. Int., 13, 189–197.PubMedGoogle Scholar
  86. 86.
    Chebotareva, N. A., Kurganov, B. I., Lubarev, A. E., Davydov, D. R., and Pekel, N. D. (1991) Biochimie, 73, 1339–1343.PubMedGoogle Scholar
  87. 87.
    Chebotareva, N. A., Klinov, S. V., and Kurganov, B. I. (2001) Biotechnol. Genet. Eng. Rev., 18, 265–297.PubMedGoogle Scholar
  88. 88.
    Kurganov, B. I., Klinov, S. V., and Chebotareva, N. A. (1994) Uspekhi Biol. Khim., 34, 83–110.Google Scholar
  89. 89.
    Kurganov, B. I., Schors, E. I., Livanova, N. B., Chebotareva, N. A., Eronina, T. B., Andreeva, I. E., Makeeva, V. F., and Pekel, N. D. (1993) Biochimie, 75, 481–485.PubMedGoogle Scholar
  90. 90.
    Chebotareva, N. A., Kurganov, B. I., Harding, S. E., and Winzor, D. J. (2005) Biophys. Chem., 113, 61–66.PubMedGoogle Scholar
  91. 91.
    Chebotareva, N. A. (2006) Interaction of Glycogenolytic Enzymes under Molecular Crowding Conditions: Doctoral dissertation [in Russian], Bach Institute of Biochemistry, Moscow, p. 50.Google Scholar
  92. 92.
    Sprang, S. R., Acharya, K. R., Goldsmith, E. J., Stuart, D. L., Varvill, K., Fletterick, R. J., Madsen, N. B., and Johnson, L. N. (1988) Nature, 336, 219–221.Google Scholar
  93. 93.
    Sprang, S. R., Withers, S. G., Goldsmith, E. J., Fletterick, R. J., and Madsen, N. B. (1991) Science, 254, 1367–1371.PubMedGoogle Scholar
  94. 94.
    Livanova, N. B., and Kornilaev, B. A. (1996) Biochemistry (Moscow), 61, 1432–1442.Google Scholar
  95. 95.
    Chebotareva, N. A., Harding, S. E., and Winzor, D. J. (2001) Eur. J. Biochem., 268, 506–513.PubMedGoogle Scholar
  96. 96.
    Kurganov, B. I., Topchieva, I. N., Lisovskaya, N. P., Chebotareva, N. A., and Natarius, O. Ya. (1979) Biokhimiya, 44, 629–633.Google Scholar
  97. 97.
    Jacobsen, M. P., and Winzor, D. J. (1997) Progr. Colloid Polym. Sci., 107, 82–87.Google Scholar
  98. 98.
    Krebs, E. G., Graves, D. J., and Fisher, E. H. (1959) J. Biol. Chem., 23, 2867–2873.Google Scholar
  99. 99.
    Brusharia, R. J., and Walsh, D. A. (1999) Front. Biosci., 4, 618–641.Google Scholar
  100. 100.
    Livanova, N. B. (1993) Biochemistry (Moscow), 58, 1234–1239.Google Scholar
  101. 101.
    Cohen, P. (1973) Eur. J. Biochem., 34, 1–14.PubMedGoogle Scholar
  102. 102.
    Nadeaw, O. W., Traxler, K. W., Fee, L. R., Baldwin, B. A., and Carlson, G. M. (1999) Biochemistry, 38, 2551–2559.Google Scholar
  103. 103.
    Wilkinson, D. A., Fitzgerald, T. J., Marion, T. N., and Carlson, G. M. (1999) J. Protein Chem., 18, 157–164.PubMedGoogle Scholar
  104. 104.
    Priddy, T. S., Middaugh, C. R., and Carlson, G. M. (2007) Protein Sci., 16, 517–527.PubMedGoogle Scholar
  105. 105.
    Priddy, T. S., MacDonald, B. A., Heller, W. T., Nadeau, O. W., Trewhella, J., and Carlson, G. M. (2005) Protein Sci., 14, 1039–1048.PubMedGoogle Scholar
  106. 106.
    Priddy, T. S., Price, E. S., Johnson, C. K., and Carlson, G. M. (2007) Protein Sci., 16, 1017–1023.PubMedGoogle Scholar
  107. 107.
    Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Livanova, N. B., and Harding, S. E. (2002) Progr. Colloid Polym. Sci., 119, 70–76.Google Scholar
  108. 108.
    Chebotareva, N. A., Meremyanin, A. V., Makeeva, V. F., and Kurganov, B. I. (2006) Progr. Colloid Polym. Sci., 131, 83–92.Google Scholar
  109. 109.
    Meremyanin, A. V., Chebotareva, N. A., Makeeva, V. F., and Kurganov, B. I. (2007) Dokl. Ros. Akad. Nauk, 415, 1–3.Google Scholar
  110. 110.
    Polishchuk, S. V., Brandt, N. R., Meyer, H. E., Varsanyi, M., and Heilmeyer, L. M., Jr. (1995) FEBS Lett., 362, 271–275.PubMedGoogle Scholar
  111. 111.
    Singh, P., Salih, M., Leddy J. J., and Tuana, B. S. (2004) J. Biol. Chem., 279, 35176–35182.PubMedGoogle Scholar
  112. 112.
    Chebotareva, N. A., Andreeva, I. E., Makeeva, V. F., Livanova, N. B., and Kurganov, B. I. (2004) J. Mol. Recogn., 17, 426–432.Google Scholar
  113. 113.
    Meyer, H. E., Heilmeyer, L. M. G., Jr., and Haschke, R. H. (1970) J. Biol. Chem., 245, 6642–6648.PubMedGoogle Scholar
  114. 114.
    Shearwin, K. E., and Winzor, D. J. (1988) Biophys. Chem., 31, 287–294.PubMedGoogle Scholar
  115. 115.
    Cann, J. R., Coombs, R. O., Howlett, G. R., Jacobsen, M. P., and Winzor, D. J. (1994) Biochemistry, 33, 10185–10190.PubMedGoogle Scholar
  116. 116.
    Shtilerman, M. D., Ding, T. T., and Lansbury, P. T., Jr. (2002) Biochemistry, 41, 3855–3860.PubMedGoogle Scholar
  117. 117.
    Chebotareva, N. A., Lisovskaya, N. P., and Kurganov, B. I. (1979) Mol. Biol. (Moscow), 13, 228–236.Google Scholar
  118. 118.
    Klinov, S. V., Chebotareva, N. A., Lisovskaya, N. P., Davidov, D. R., and Kurganov, B. I. (1982) Biochim. Biophys. Acta, 709, 91–98.PubMedGoogle Scholar
  119. 119.
    Steiner, R. F., and Marshall, L. (1982) Biochim. Biophys. Acta, 707, 38–45.PubMedGoogle Scholar
  120. 120.
    Zemskova, M. A., Shur, S. A., Skolysheva, L. K., and Vulfson, P. L. (1989) Biokhimiya, 54, 662–668.Google Scholar
  121. 121.
    Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Chebotareva, N. A., and Livanova, N. B. (1999) FEBS Lett., 445, 173–176.PubMedGoogle Scholar
  122. 122.
    Andreeva, I. E., Makeeva, V. F., Kurganov, B. I., Chebotareva, N. A., and Livanova, N. B. (1999) Biochemistry (Moscow), 64, 159–168.Google Scholar
  123. 123.
    Oikonomakos, N. G., Acharya, K. R., and Johnson, L. N. (1992) Post-Translational Modifications of Proteins (Harding, J. J., and Crabbe, M. J. C., eds.) CRC Press, Boca Raton, FL, pp. 81–151.Google Scholar
  124. 124.
    Chan, K. F., and Graves, D. J. (1982) J. Mol. Biol., 257, 5939–5947.Google Scholar
  125. 125.
    Shmelev, V. K., and Serebrenikova, T. P. (1997) Biochem. Mol. Biol. Int., 43, 867–872.PubMedGoogle Scholar
  126. 126.
    Morange, M., and Buc, H. (1979) Biochimie, 61, 633–643.PubMedGoogle Scholar
  127. 127.
    Oikonomakos, N. G. (2002) Curr. Protein Pept. Sci., 3, 561–586.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations