Biochemistry (Moscow)

, Volume 72, Issue 12, pp 1313–1323 | Cite as

Do we need many genes for phylogenetic inference?

  • V. V. Aleshin
  • A. V. Konstantinova
  • K. V. Mikhailov
  • M. A. Nikitin
  • N. B. Petrov


Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales + Spizellomycetales + Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis), and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha + Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.

Key words

molecular evolution homoplasy origin of multicellular organisms secondary structure of SSU rRNA Tylenchida 



eukaryotic elongation factor 1A


elongation factor-like (a paralog of elongation factor 1A)


ubiquitin-like peptide fused with S30 ribosomal protein of animals and other Holozoa


heat shock protein, chaperon


ribosomal protein of large ribosomal subunit


ribosomal protein of small ribosomal subunit


gene of elongation factor 1A


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spirin, A. S., Belozersky, A. N., Shugaeva, N. V., and Vanyushin, B. F. (1957) Biokhimiya, 22, 744–754.Google Scholar
  2. 2.
    Beklemishev, V. N. (1994) Methodology of Systematics [in Russian], KMK Publishing House, Moscow.Google Scholar
  3. 3.
    Hennig, W. (1966) Phylogenetic Systematics, Illinois University Press, Urbana.Google Scholar
  4. 4.
    Shatalkin, A. I. (1988) Biological Systematics [in Russian], Moscow State University Publishing House, Moscow.Google Scholar
  5. 5.
    Pavlinov, I. Ya. (2005) Introduction into Modern Phylogenetics (Cladogenetic Analysis) [in Russian], KMK Publishing House, Moscow.Google Scholar
  6. 6.
    Baldauf, S. L., and Palmer, J. D. (1991) Proc. Natl. Acad. Sci. USA, 90, 11558–11562.CrossRefGoogle Scholar
  7. 7.
    Petrov, N. B., and Aleshin, V. V. (2002) Genetika, 38, 1043–1062.PubMedGoogle Scholar
  8. 8.
    Moreira, D., von der Heyden, S., Bass, D., Lopez-Garcia, P., Chao, E., and Cavalier-Smith, T. (2007) Mol. Phylogenet. Evol., 44, 255–266.PubMedCrossRefGoogle Scholar
  9. 9.
    Cavalier-Smith, T., and Chao, E. E.-Y. (2003) Protist, 154, 341–358.PubMedCrossRefGoogle Scholar
  10. 10.
    Shatalkin, A. I. (2005) Zh. Obshch. Biol., 66, 389–415.PubMedGoogle Scholar
  11. 11.
    Steenkamp, E. T., Wright, J., and Baldauf, S. L. (2006) Mol. Biol. Evol., 23, 93–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Philip, G. K., Creevey, C. J., and McInerney, J. O. (2005) Mol. Biol. Evol., 22, 1175–1184.PubMedCrossRefGoogle Scholar
  13. 13.
    Seravin, L. N., and Gudkov, A. V. (2005) Zh. Obshch. Biol., 66, 212–223.PubMedGoogle Scholar
  14. 14.
    Stechmann, A., and Cavalier-Smith, T. (2002) Science, 297, 89–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Keeling, P. J., and Inagaki, Y. (2004) Proc. Natl. Acad. Sci. USA, 101, 15380–15385.PubMedCrossRefGoogle Scholar
  16. 16.
    King, N., and Carroll, S. B. (2001) Proc. Natl. Acad. Sci. USA, 98, 15032–15037.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffroy, O., Brinkmann, H., Delsuc, F., and Philippe, H. (2006) Trends Genet., 22, 225–231.PubMedCrossRefGoogle Scholar
  18. 18.
    Felsenstein, J. (1978) Syst. Zool., 27, 401–410.CrossRefGoogle Scholar
  19. 19.
    Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W., and Burger, G. (2002) Curr. Biol., 12, 1773–1778.PubMedCrossRefGoogle Scholar
  20. 20.
    Medina, M., Collins, A. G., Taylor, J. W., Valentine, J. W., Lipps, J. H., Amaral-Zettler, L., and Sogin, M. L. (2003) Int. J. Astrobiol., 2, 203–211.CrossRefGoogle Scholar
  21. 21.
    Ruiz-Trillo, I., Inagaki, Y., Davis, L. A., Sperstad, S., Landfald, B., and Roger, A. J. (2004) Curr. Biol., 14, R946–R947.PubMedCrossRefGoogle Scholar
  22. 22.
    Ruiz-Trillo, I., Lane, C. E., Archibald, J. M., and Roger A. J. (2006) J. Eukaryot. Microbiol., 53, 379–384.PubMedCrossRefGoogle Scholar
  23. 23.
    Hertel, L. A., Bayne, C. J., and Loker, E. S. (2003) Int. J. Parasitol., 32, 1183–1191.CrossRefGoogle Scholar
  24. 24.
    Jimenez-Guri, E., Philippe, H., Okamura, B., and Holland, P. W. (2007) Science, 317, 116–118.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruiz-Trillo, I., Burger, G., Holland, P. W., King, N., Lang, B. F., Roger, A. J., and Gray, M. W. (2007) Trends Genet., 23, 113–118.PubMedCrossRefGoogle Scholar
  26. 26.
    Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., et al. (2004) Am. J. Bot., 91, 1446–1480.Google Scholar
  27. 27.
    James, T. Y., Kauff, F., Schoch, C., Matheny, P. B., et al. (2006) Nature, 443, 818–822.PubMedCrossRefGoogle Scholar
  28. 28.
    Kishino, H., and Hasegawa, M. (1989) J. Mol. Evol., 29, 170–179.PubMedCrossRefGoogle Scholar
  29. 29.
    Shimodaira, H., and Hasegawa, M. (1999) Mol. Biol. Evol., 16, 1114–1116.Google Scholar
  30. 30.
    Shimodaira, H., and Hasegawa, M. (2001) Bioinformatics, 17, 1246–1247.PubMedCrossRefGoogle Scholar
  31. 31.
    Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c, Department of Genetics, University of Washington, Seattle.Google Scholar
  32. 32.
    Philippe, H. (1993) Nucleic Acids Res., 21, 5264–5272.PubMedCrossRefGoogle Scholar
  33. 33.
    Logacheva, M. D., Penin, A. A., Samigullin, T. Y., Vallejo-Roman, C. M., and Antonov, A. S. (2007) Biochemistry (Moscow), 72, 1324–1330.Google Scholar
  34. 34.
    Kas, K., Michiels, L., and Merregaert, J. (1992) Biochem. Biophys. Res. Commun., 187, 927–933.PubMedCrossRefGoogle Scholar
  35. 35.
    Perina, D., Cetkovic, H., Harcet, M., Premzl, M., Lukic-Bilela, L., Muller, W. E., and Gamulin, V. (2006) Gene, 366, 275–284.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker, R. T., Williamson, N. A., and Wettenhall, R. E. (1996) J. Biol. Chem., 271, 13549–13555.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones, D., and Candido, E. P. (1993) J. Biol. Chem., 268, 19545–19551.PubMedGoogle Scholar
  38. 38.
    Meldal, B. H., Debenham, N. J., De Ley, P., De Ley, I. T., Vanfleteren, J. R., Vierstraete, A. R., Bert, W., Borgonie, G., Moens, T., Tyler, P. A., Austen, M. C., Blaxter, M. L., Rogers, A. D., and Lambshead, P. J. (2007) Mol. Phylogenet. Evol., 42, 622–636.PubMedCrossRefGoogle Scholar
  39. 39.
    Drozdovskii, E. M. (1968) Dokl. AN SSSR, 180, 750–753.Google Scholar
  40. 40.
    Finley, D., Bartel, B., and Varshavsky, A. (1989) Nature, 338, 394–401.PubMedCrossRefGoogle Scholar
  41. 41.
    Rossman, T. G., Visalli, M. A., and Komissarova, E. V. (2003) Oncogene, 22, 1817–1821.PubMedCrossRefGoogle Scholar
  42. 42.
    Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., and Pawlowski, J. (2007) PLoS ONE, 2, e790.PubMedCrossRefGoogle Scholar
  43. 43.
    Rodriguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., and Lang, B. F. (2007) Curr Biol., 17, 1420–1425.PubMedCrossRefGoogle Scholar
  44. 44.
    Cavalier-Smith, T., and Chao, E. E-Y. (2006) J. Mol. Evol., 62, 388–420.PubMedCrossRefGoogle Scholar
  45. 45.
    Bhattacharya, D., Helmchen, T., Bibeau, C., and Melkonian, M. (1995) Mol. Biol. Evol., 12, 415–420.PubMedGoogle Scholar
  46. 46.
    Hoef-Emden, K., Marin, B., and Melkonian, M. (2002) J. Mol. Evol., 55, 161–179.PubMedCrossRefGoogle Scholar
  47. 47.
    Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A., and McFadden, G. I. (2002) J. Phycol., 38, 1529–8817.CrossRefGoogle Scholar
  48. 48.
    Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E. S., Thorndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R., and Telford, M. J. (2006) Nature, 444, 85–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Baurain, D., Brinkmann, H., and Philippe, H. (2006) Mol. Biol. Evol., 24, 6–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Samigullin, T. K., Yacentyuk, S. P., Degtyaryeva, G. V., Valiehoroman, K. M., Bobrova, V. K., Capesius, I., Martin, W. F., Troitsky, A. V., Filin, V. R., and Antonov, A. S. (2002) Arctoa, 11, 31–43.Google Scholar
  51. 51.
    Qiu, Y. L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., and Davis, C. C. (2006) Proc. Natl. Acad. Sci. USA, 103, 15511–15516.PubMedCrossRefGoogle Scholar
  52. 52.
    Rokas, A., Williams, B. L., King, N., and Carroll, S. B. (2003) Nature, 425, 798–804.PubMedCrossRefGoogle Scholar
  53. 53.
    Philippe, H., Lartillot, N., and Brinkmann, H. (2005) Mol. Biol. Evol., 22, 1246–1253.PubMedCrossRefGoogle Scholar
  54. 54.
    Dopazo, H., Santoyo, J., and Dopazo, J. (2004) Bioinformatics, 20(Suppl. 1), i116–i121.PubMedCrossRefGoogle Scholar
  55. 55.
    Degtjareva, G. V., Samigullin, T. Y., Sokoloff, D. D., and Vallejo-Roman, C. M. (2004) Botan. J., 89, 896–907.Google Scholar
  56. 56.
    Rokas, A., and Holland, P. W. H. (2000) Trends Ecol. Evol., 15, 454–459.PubMedCrossRefGoogle Scholar
  57. 57.
    Schmidt, H. A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) Bioinformatics, 18, 502–504.PubMedCrossRefGoogle Scholar
  58. 58.
    Huelsenbeck, J. P., and Ronquist, F. (2001) Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. V. Aleshin
    • 1
  • A. V. Konstantinova
    • 1
  • K. V. Mikhailov
    • 2
  • M. A. Nikitin
    • 2
  • N. B. Petrov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations