Advertisement

Biochemistry (Moscow)

, Volume 72, Issue 11, pp 1261–1269 | Cite as

Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of germanic acid

  • T. A. Safonova
  • V. V. Annenkov
  • E. P. Chebykin
  • E. N. Danilovtseva
  • Ye. V. LikhoshwayEmail author
  • M. A. Grachev
Article

Abstract

Addition of germanic acid into the culture medium of the diatom Synedra acus subsp. radians (Kutz.) Skabitsch. had nearly no influence on the culture growth at the Ge/Si molar ratio 0.01, but stopped it at ratios 0.05 and higher. It was shown by mass-spectrometry that at the Ge/Si ratio 0.01 germanium was incorporated in both the cytoplasm and siliceous valves, whereas at Ge/Si 0.05 it was incorporated into the cytoplasm but almost failed to accumulate in the valves. At Ge/Si 0.1 germanium was accumulated in the cytoplasm, but its incorporation into the valves terminated. Studies on the cell morphology by light, epifluorescence, and transmission electron microscopy showed that high concentrations of germanic acid induced disorders in morphogenesis of the siliceous frustule and accumulation of large rhodamine-stainable electron-dense inclusions. Model chemical experiments with over-saturated solutions of silicic acid in the presence of polyallylamine revealed that addition of 5% germanic acid considerably accelerated coagulation of silica. Hence, the toxic effect of germanic acid on diatoms could be caused by changes in coagulation of silica.

Key words

diatoms silica germanium polyallylamine morphogenesis epifluorescence and transmission electron microscopy 

Abbreviations

PAA

polyallylamine

SDV

silica deposition vesicles

SIT

silicon transporter

TEM

transmission electron microscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A., and Queguiner, B. (1995) Global Biogeochem. Cycles, 9, 353–365.CrossRefGoogle Scholar
  2. 2.
    Pickett-Heaps, J. D., Schmid, A.-M. M., and Edgar, L. A. (1990) Prog. Phycol. Res., 7, 1–168.Google Scholar
  3. 3.
    Hildebrand, M., Volcani, B. E., Gassmann, W., and Schroeder, J. I. (1997) Nature, 385, 688–689.PubMedCrossRefGoogle Scholar
  4. 4.
    Hildebrand, M., Dahlin, K., and Volcani, B. E. (1998) Mol. Gen. Genet., 260, 480–486.PubMedCrossRefGoogle Scholar
  5. 5.
    Grachev, M. A., Denikina, N. N., Belikov, S. I., Likhoshway, Ye. V., Usoltseva, M. V., Tikhonova, I. V., Adelshin, R. V., Kler, S. A., and Sherbakova, T. A. (2002) Mol. Biol. (Moscow), 36, 679–681.Google Scholar
  6. 6.
    Sherbakova, T. A., Masyukova, Yu. A., Safonova, T. A., Petrova, D. P., Vereschagin, A. L., Minaeva, T. V., Adelshin, R. V., Triboi, T. I., Stonik, I. V., Aizdaicher, N. A., Kozlov, M. V., Likhoshway, Ye. V., and Grachev, M. A. (2005) Mol. Biol. (Moscow), 39, 303–316.Google Scholar
  7. 7.
    Zurzolo, C., and Bowler, C. (2001) Plant Physiol., 127, 1339–1345.PubMedCrossRefGoogle Scholar
  8. 8.
    Azam, F., Hemmingsen, B. B., and Volcani, B. E. (1973) Arch. Microbiol., 92, 11–20.Google Scholar
  9. 9.
    Lewin, J. C. (1966) Phycologia, 6, 1–12.Google Scholar
  10. 10.
    Azam, F., and Volcani, B. E. (1981) in Silicon and Siliceous Structures in Biological Systems (Simpson, T. L., and Volcani, B. E., eds.) Springer-Verlag, Berlin, pp. 43–67.Google Scholar
  11. 11.
    Martin-Jezequel, V., Hildebrand, M., and Brzezinski, M. A. (2000) J. Phycol., 36, 821–840.CrossRefGoogle Scholar
  12. 12.
    Thompson, A. S., Rhodes, J. C., and Pettman, I. (eds.) (1988) Culture Collections of Algae and Protozoa, Kendal, Titus Wilson & Son, p. 18.Google Scholar
  13. 13.
    Safonova, T. A., Aslamov, I. A., Basharina, T. N., Chenski, A. G., Vereschagin, A. L., Glyzina, O. Yu., and Grachev, M. A. (2007) Diatom Res., 22, 189–195.Google Scholar
  14. 14.
    Reynolds, E. S. (1963) J. Cell Biol., 17, 208–212.PubMedCrossRefGoogle Scholar
  15. 15.
    Bedoshwili, E. D., Likhoshway, Ye. V., and Grachev, M. A. (2007) Izv. Ros. Akad. Nauk, Ser. Biol., 3, 367–371.Google Scholar
  16. 16.
    Makarova, I. V., and Pichkily, L. O. (1970) Botan. Zh., 55, 1488–1493.Google Scholar
  17. 17.
    Iler, R. (1982) The Chemistry of Silica [Russian translation], Mir, Moscow.Google Scholar
  18. 18.
    Grachev, M. A., Annenkov, V. V., and Likhoshway, Ye. V. (2006) 19th Int. Diatom Symp., Irkutsk, p. 52.Google Scholar
  19. 19.
    Hildebrand, M. (2003) Progr. Org. Coatings, 47, 256–266.CrossRefGoogle Scholar
  20. 20.
    Li, C.-W., Chu, S., and Lee, M. (1989) Protoplasma, 151, 158–163.CrossRefGoogle Scholar
  21. 21.
    Brzezinski, M. A., and Conley, D. J. (1994) J. Phycol., 30, 45–55.CrossRefGoogle Scholar
  22. 22.
    Kaluzhnaya, O. V., and Likhoshway, Ye. V. (2007) Diatom Res., 22, 81–87.Google Scholar
  23. 23.
    Patwardhan, S. V., and Clarson, S. J. (2002) J. Inorg. Organometal. Polymers, 12, 109–116.CrossRefGoogle Scholar
  24. 24.
    Schmid, A.-M. M., and Schulz, D. (1979) Protoplasma, 100, 267–288.CrossRefGoogle Scholar
  25. 25.
    Sumper, M. (2004) Angew. Chem., 116, 2301–2304.CrossRefGoogle Scholar
  26. 26.
    Bertermann, R., Kroger, N., and Tacke, R. (2003) Analyt. Bioanalyt. Chem., 375, 630–634.Google Scholar
  27. 27.
    Round, F. E., Crawford, R. M., and Mann, D. G. (1990) The Diatoms, Cambridge University Press, N. Y.Google Scholar
  28. 28.
    Hildebrand, M., York, E., Kelz, J. I., Davis, A. K., Frigeri, L. G., Allison, D. P., and Doktycz, M. J. (2006) J. Mater. Res., 21, 2689–2698.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • T. A. Safonova
    • 1
  • V. V. Annenkov
    • 1
  • E. P. Chebykin
    • 1
  • E. N. Danilovtseva
    • 1
  • Ye. V. Likhoshway
    • 1
    Email author
  • M. A. Grachev
    • 1
  1. 1.Limnological InstituteSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations