Biochemistry (Moscow)

, Volume 72, Issue 11, pp 1225–1232 | Cite as

Proteolysis of ribosomal protein S1 from Escherichia coli and Thermus thermophilus leads to formation of two different fragments

  • O. M. Selivanova
  • Yu. Yu. Fedorova
  • I. N. SerduykEmail author


As a result of limited tryptic proteolysis of S1 ribosomal protein (molecular mass 60 kD) from Thermus thermophilus, 25 N-terminal amino acid residues and 71 C-terminal amino acid residues are split off and a stable high-molecular-weight fragment with molecular mass of 49 kD is formed that retains RNA-binding properties and is capable of interacting with 30S ribosomal subunit. Earlier, application of a similar procedure for the formation of a fragment of S1 protein from Escherichia coli resulted in splitting of 171 N-terminal amino acid residues with the formation of a 41.3 kD fragment that possesses RNA-binding properties only. Thus, in spite of high homology between E. coli and T. thermophilus proteins, the proteolysis leads to the formation of two different fragments, which points, in our opinion, to the fact of significant differences between their structures.

Key words

ribosome S1 ribosomal protein limited proteolysis Thermus thermophilus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shiryaev, V. M., Selivanova, O. M., Hartsch, T., Nazimov, I. V., and Spirin, A. S. (2002) FEBS Lett., 525, 88–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Sorensen, M. A., Fricke, J., and Pedersen, S. (1998) J. Mol. Biol., 280, 561–569.PubMedCrossRefGoogle Scholar
  3. 3.
    Potapov, A. P., and Subramanian, A. R. (1992) Biochem. Int., 27, 745–753.PubMedGoogle Scholar
  4. 4.
    Boni, I. V., Isaeva, D. M., Musychenko, M. L., and Tzareva, N. V. (1991) Nucleic Acids Res., 19, 155–162.PubMedCrossRefGoogle Scholar
  5. 5.
    Sengupta, J., Agrawal, R. K., and Frank, J. (2001) Proc. Natl. Acad. Sci. USA, 98, 11991–11996.PubMedCrossRefGoogle Scholar
  6. 6.
    Skouv, J., Schnier, J., Rasmussen, M. D., Subramanian, A. R., and Pedersen, S. (1990) J. Biol. Chem., 265, 17044–17049.PubMedGoogle Scholar
  7. 7.
    Wower, I. K., Zweib, Ch. W., Guven, S. A., and Wower, J. (2000) EMBO J., 19, 6612–6621.PubMedCrossRefGoogle Scholar
  8. 8.
    Kolb, A., Hermozso, J. M., Thomas, J. O., and Szer, W. (1977) Proc. Natl. Acad. Sci. USA, 74, 2379–2383.PubMedCrossRefGoogle Scholar
  9. 9.
    Bordeau, V., and Felden, B. (2002) Biochimie, 84, 723–729.PubMedCrossRefGoogle Scholar
  10. 10.
    Valle, M., Gillet, R., Kaur, S., Henne, A., Ramakrishnan, V., and Frank, J. (2003) Science, 300, 127–130.PubMedCrossRefGoogle Scholar
  11. 11.
    Shpanchenko, O. V., Ivanov, P. V., Zvereva, M. E., Bogdanov, A. A., and Dontsova, O. A. (2004) Mol. Biol. (Moscow), 38, 777–788.CrossRefGoogle Scholar
  12. 12.
    Tzareva, N. V., Makhno, V. I., and Boni, I. V. (1994) FEBS Lett., 337, 189–194.PubMedCrossRefGoogle Scholar
  13. 13.
    Kamen, R., Kondo, M., Romer, W., and Weissmann, C. (1972) Eur. J. Biochem., 31, 44–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Wahba, A. J., Miller, M. J., Niveleau, T. A., Carmichael, G. G., Weber, K., Hawley, D. A., and Slobin, L. I. (1974) J. Biol. Chem., 249, 3314–3316.PubMedGoogle Scholar
  15. 15.
    Ruchman, J., Ringquist, S., Brody, E., and Gold, L. (1994) J. Biol. Chem., 269, 26655–26662.Google Scholar
  16. 16.
    Feng, Y., Huang, H., Liao, J., and Cohen, S. N. (2001) J. Biol. Chem., 276, 31651–31656.PubMedCrossRefGoogle Scholar
  17. 17.
    Subramanian, A. R. (1983) Progr. Nucleic Acid Res. Mol. Biol., 28, 101–142.Google Scholar
  18. 18.
    Gribskov, M. (1992) Gene, 119, 107–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Regnier, P., Grunberg-Manago, M., and Portier, C. (1987) J. Biol. Chem., 262, 63–68.PubMedGoogle Scholar
  20. 20.
    Cormack, R. S., Genereaux, J. L., and Mackie, G. A. (1993) Proc. Natl. Acad. Sci. USA, 90, 9006–9010.PubMedCrossRefGoogle Scholar
  21. 21.
    Bycroft, M., Hubbard, T., Proctor, M., Freund, S. M. V., and Murzin, A. G. (1997) Cell, 88, 235–242.PubMedCrossRefGoogle Scholar
  22. 22.
    De Boer, P., Vos, H. R., Faber, A. W., Vos, J. C., and Raue, H. A. (2006) RNA, 12, 263–271.PubMedCrossRefGoogle Scholar
  23. 23.
    Giri, L., and Subramanian, A. R. (1977) FEBS Lett., 81, 199–203.PubMedCrossRefGoogle Scholar
  24. 24.
    Yokota, T., Arai, K., and Kaziro, Y. (1979) J. Biochem. (Tokyo), 86, 1725–1737.Google Scholar
  25. 25.
    Laughrea, M., and Moore, P. B. (1977) J. Mol. Biol., 112, 399–421.PubMedCrossRefGoogle Scholar
  26. 26.
    Labischinski, H., and Subramanian, A. R. (1979) Eur. J. Biochem., 95, 359–366.PubMedCrossRefGoogle Scholar
  27. 27.
    Suryanarayana, T., and Subramanian, A. R. (1979) J. Mol. Biol., 127, 41–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Giorginis, S., and Subramanian, A. R. (1980) J. Mol. Biol., 141, 393–408.PubMedCrossRefGoogle Scholar
  29. 29.
    Subramanian, A. R. (1985) Essay Biochem., 21, 45–85.Google Scholar
  30. 30.
    Subramanian, A. R., and Mizushima, S. (1979) J. Biol. Chem., 254, 4309–4312.PubMedGoogle Scholar
  31. 31.
    Boni, I. V., Artamonova, V. S., and Dreyfus, M. (2000) J. Bacteriol., 182, 5872–5879.PubMedCrossRefGoogle Scholar
  32. 32.
    McGinness, K. E., and Sauer, R. T. (2004) Proc. Natl. Acad. Sci. USA, 101, 13454–13459.PubMedCrossRefGoogle Scholar
  33. 33.
    Bisaglia, M., Laalami, S., Uzan, M., and Bontems, F. (2003) J. Biol. Chem., 278, 15261–15271.PubMedCrossRefGoogle Scholar
  34. 34.
    Selivanova, O. M., Shiryaev, V. M., Tiktopulo, E. I., Potekhin, S. A., and Spirin, A. S. (2003) J. Biol. Chem., 278, 36311–36314.PubMedCrossRefGoogle Scholar
  35. 35.
    Timchenko, A. A., Shiryaev, V. M., Fedorova, Yu. Yu., Kihara, H., Kimura, K., Willumeit, R., Garamus, V. M., and Selivanova, O. M. (2007) Biophysics (Moscow), 52, 162–167.Google Scholar
  36. 36.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  37. 37.
    Bradford, M. (1976) Analyt. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsudaira, P. (1987) J. Biol. Chem., 262, 10035–10038.PubMedGoogle Scholar
  39. 39.
    Pokrovskaya, I. D., and Gurevich, V. V. (1994) Analyt. Biochem., 220, 420–423.PubMedCrossRefGoogle Scholar
  40. 40.
    Draper, D. E., Deckman, I. C., and Vartikar, J. V. (1988) Meth. Enzymol., 164, 203–220.PubMedCrossRefGoogle Scholar
  41. 41.
    Mougel, M., Allmang, C., Eyermann, F., Cachia, C., Ehresmann, B., and Ehresmann, C. (1993) Eur. J. Biochem., 215, 787–792.PubMedCrossRefGoogle Scholar
  42. 42.
    Gogiya, Z. V., Yusupov, M. M., and Spirina, T. N. (1986) Mol. Biol. (Moscow), 20, 415–421.Google Scholar
  43. 43.
    Subramanian, A. R., Rienhardt, P., Kimura, M., and Suryanarayana, T. (1981) Eur. J. Biochem., 119, 245–249.PubMedCrossRefGoogle Scholar
  44. 44.
    Sedelnikova, S. E., Agalarov, S. C., Garber, M. B., and Yusupov, M. M. (1987) FEBS Lett., 220, 227–230.CrossRefGoogle Scholar
  45. 45.
    Draper, D. E., and von Hippel, P. H. (1978) J. Mol. Biol., 122, 339–359.PubMedCrossRefGoogle Scholar
  46. 46.
    Thomas, J. O., Kolb, A., and Szer, V. (1978) J. Mol. Biol., 123, 163–176.PubMedCrossRefGoogle Scholar
  47. 47.
    Boni, I. V., Artamonova, V. S., Tzareva, N. V., and Dreyfus, M. (2001) EMBO J., 20, 4222–4232.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. M. Selivanova
    • 1
  • Yu. Yu. Fedorova
    • 1
  • I. N. Serduyk
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations