Advertisement

Biochemistry (Moscow)

, Volume 72, Issue 11, pp 1205–1215 | Cite as

Effect of calcium chelators on the formation and oxidation of the slowly relaxing reduced plastoquinone pool in calcium-depleted PSII membranes. Investigation of the F0 yield

  • B. K. SeminEmail author
  • L. N. Davletshina
  • A. A. Bulychev
  • I. I. Ivanov
  • M. Seibert
  • A. B. Rubin
Article

Abstract

The F0 fluorescence yield in intact photosystem II (PSII), Ca-depleted PSII (PSII(-Ca/NaCl)), and Mn-depleted PSII membranes was measured before and after dim light treatment (1–2 min), using flash-probe fluorescence and fluorescence induction kinetic measurements. The value of F0 after the light treatment (F’0) was larger than F0 in dark-adapted PSII membranes and depended on the appearance of the slowly relaxing, reduced plastoquinone pool (t 1/2 = 4 min) formed during preillumination, which was not totally reoxidized before the F’0 measurement. In PSII(-Ca/NaCl) such a pool also appeared, but the F’0 yield was even higher than in intact PSII membranes. In Mn-depleted PSII membranes, the pool did not form. Interestingly, the yield of F’0 in Ca-depleted PSII membranes prepared using chelators (EGTA and citrate) or containing 5 mM EGTA was significantly lower than in PSII(-Ca/NaCl) samples prepared without chelators. These data indicate that chelators inhibit the reduction of QA and QB and formation of the slowly relaxing plastoquinone pool, or alternatively they increase the rate of its oxidation. Such an effect can be explained by coordination of the chelator molecule to the Mn cluster in PSII(-Ca/NaCl) membranes, rather than different amounts of residual Ca2+ in the membranes (with or without the chelator), since the remaining oxygen-evolving activity (∼15%) in PSII(-Ca/NaCl) samples did not depend on the presence of the chelator. Thus, chelators of calcium cations not only have an effect on the EPR properties of the S2 state in PSII(-Ca/NaCl) samples, but can also influence the PSII properties determining the rate of plastoquinone pool reduction and/or oxidation. The effect of some toxic metal cations (Cd, Cu, Hg) on the formation of the slowly relaxing pool in PSII membranes was also studied.

Key words

photosystem II oxygen-evolving complex calcium plastoquinone QA plastoquinone QB fluorescence fluorescence induction kinetics F0 

Abbreviations

F0

minimal fluorescence of “open” reaction centers in dark-adapted samples

F’0)

minimal fluorescence measured after preliminary exposure of a sample to light

Fmax

maximum fluorescence yield

DPC

1,5-diphenylcarbazide

FIK

fluorescence induction kinetics

OEC

oxygen-evolving complex

PSII

photosystem II

PSII(-Mn)

Mn-depleted photosystem II

PSII(-Ca/NaCl)

photosystem II with Ca extracted by treatment with 2 M NaCl

PSII(-Ca/NaCl + 50 μM EGTA)

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 50 μM EGTA

PSII(-Ca/NaCl + 5 mM EGTA)

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA

PSII(-Ca/NaCl + 5 mM EGTA →-EGTA)

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA and with subsequent washing free of EGTA

PSII(-Ca/pH 3.0)

photosystem II with Ca extracted by treatment with citrate buffer (pH 3.0)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McEvoy, J. P., and Brudvig, G. W. (2006) Chem. Rev., 106, 4455–4482.PubMedCrossRefGoogle Scholar
  2. 2.
    Debus, R. J. (1992) Biochim. Biophys. Acta, 1102, 269–352.PubMedCrossRefGoogle Scholar
  3. 3.
    Nelson, N., and Yocum, C. F. (2006) Annu. Rev. Plant Biol., 57, 521–565.PubMedCrossRefGoogle Scholar
  4. 4.
    Lindberg, K., and Andreasson, L. E. (1996) Biochemistry, 35, 14259–14267.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoganson, C. W., and Babcock, G. T. (1997) Science, 277, 1953–1956.PubMedCrossRefGoogle Scholar
  6. 6.
    Miqyass, M., van Gorkom, H. J., and Yocum, C. F. (2007) Photosynth. Res., 92, 275–287.PubMedCrossRefGoogle Scholar
  7. 7.
    Loll, B., Kern, J., Saenger, W., Zouni, A., and Biesiadka, J. (2005) Nature, 438, 1040–1044.PubMedCrossRefGoogle Scholar
  8. 8.
    Yano, J., Kern, J., Sauer, K., Latimer, M. J., Pushkar, Y., Biesiadka, J., Loll, B., Saenger, W., Messinger, J., Zouni, A., and Yachandra, V. K. (2006) Science, 314, 821–825.PubMedCrossRefGoogle Scholar
  9. 9.
    Latimer, M. J., DeRose, V. J., Mukerji, I., Yahandra, V. K., Sauer, K., and Klein, M. P. (1995) Biochemistry, 34, 10898–10909.PubMedCrossRefGoogle Scholar
  10. 10.
    Ghanotakis, D. F., Babckock, G. T., and Yocum, C. F. (1984) FEBS Lett., 167, 127–130.CrossRefGoogle Scholar
  11. 11.
    Cammarata, K. V., and Cheniae, G. M. (1987) Plant Physiol., 84, 587–595.PubMedGoogle Scholar
  12. 12.
    Ghanotakis, D. F., Topper, J. N., Babcock, G. T., and Yocum, C. F. (1984) FEBS Lett., 170, 169–173.CrossRefGoogle Scholar
  13. 13.
    Boussac, A., and Rutherford, A. W. (1988) Biochemistry, 27, 3476–3483.CrossRefGoogle Scholar
  14. 14.
    Boussac, A., and Rutherford, A. W. (1988) FEBS Lett., 236, 432–436.CrossRefGoogle Scholar
  15. 15.
    Ono, T., and Inoue, Y. (1986) Biochim. Biophys. Acta, 850, 380–389.CrossRefGoogle Scholar
  16. 16.
    Boussac, A., Maison-Peteri, B., Vernotte, C., and Etienne, A.-L. (1985) Biochim. Biophys. Acta, 808, 225–230.CrossRefGoogle Scholar
  17. 17.
    Andreasson, L.-E., Vass, I., and Styring, S. (1995) Biochim. Biophys. Acta, 1230, 155–164.CrossRefGoogle Scholar
  18. 18.
    Ono, T., and Inoue, Y. (1989) Biochim. Biophys. Acta, 973, 443–449.CrossRefGoogle Scholar
  19. 19.
    Hallahan, B. J., Nugent, J. H. A., Warden, J. T., and Evans, M. C. W. (1992) Biochemistry, 31, 4562–4573.PubMedCrossRefGoogle Scholar
  20. 20.
    Boussac, A., Setif, P., and Rutherford, A. W. (1992) Biochemistry, 31, 1224–1234.PubMedCrossRefGoogle Scholar
  21. 21.
    Styring, S., Feyziyev, Y., Mamedov, F., Hillier, W., and Babcock, G. T. (2003) Biochemistry, 42, 6185–6192.PubMedCrossRefGoogle Scholar
  22. 22.
    Sivaraja, M., Tso, J., and Dismukes, G. C. (1989) Biochemistry, 28, 9459–9464.PubMedCrossRefGoogle Scholar
  23. 23.
    Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1989) Biochemistry, 28, 8984–8989.PubMedCrossRefGoogle Scholar
  24. 24.
    Ono, T., and Inoue, Y. (1990) Biochim. Biophys. Acta, 1015, 269–277.CrossRefGoogle Scholar
  25. 25.
    Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1990) FEBS Lett., 277, 69–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Krieger, A., Rutherford, A. W., and Johnson, G. N. (1995) Biochim. Biophys. Acta, 1229, 193–201.CrossRefGoogle Scholar
  27. 27.
    Krieger, A., Rutherford, A. W., and Johnson, G. N. (1998) Biochim. Biophys. Acta, 1364, 46–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson, G. N., Boussac, A., and Rutherford, A. W. (1994) Biochim. Biophys. Acta, 1184, 85–92.CrossRefGoogle Scholar
  29. 29.
    Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett., 134, 231–234.CrossRefGoogle Scholar
  30. 30.
    Ghanotakis, D. F., and Babckock, G. T. (1983) FEBS Lett., 153, 231–234.CrossRefGoogle Scholar
  31. 31.
    Porra, R. J., Tompson, W. A., and Kriedemann, P. E. (1989) Biochim. Biophys. Acta, 975, 384–394.CrossRefGoogle Scholar
  32. 32.
    Arnon, D. J. (1949) Plant Physiol., 24, 1–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Ono, T., and Inoue, Y. (1988) FEBS Lett., 227, 147–152.CrossRefGoogle Scholar
  34. 34.
    Preston, C., and Seibert, M. (1991) Biochemistry, 30, 9615–9624.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghirardi, M. L., Lutton, T. W., and Seibert, M. (1996) Biochemistry, 35, 1820–1828.PubMedCrossRefGoogle Scholar
  36. 36.
    Strasser, B. J. (1997) Photosynth. Res., 52, 147–155.CrossRefGoogle Scholar
  37. 37.
    Ono, T.-A., and Inoue, Y. (1984) FEBS Lett., 168, 281–286.CrossRefGoogle Scholar
  38. 38.
    Miyao, M., and Murata, N. (1984) FEBS Lett., 168, 118–120.CrossRefGoogle Scholar
  39. 39.
    Miyao, M., and Murata, N. (1986) Photosynth. Res., 10, 489–496.CrossRefGoogle Scholar
  40. 40.
    Semin, B. K., and Seibert, M. (2004) Biochemistry, 43, 6772–6782.PubMedCrossRefGoogle Scholar
  41. 41.
    Pospisil, P., and Dau, H. (2000) Photosynth. Res., 65, 41–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Pospisil, P., and Dau, H. (2002) Biochim. Biophys. Acta, 1554, 94–100.PubMedCrossRefGoogle Scholar
  43. 43.
    Heredia, P., and De Las Rivas, J. (2003) J. Plant Physiol., 160, 1499–1506.PubMedCrossRefGoogle Scholar
  44. 44.
    Toth, S. Z., Schansker, G., and Strasser, R. J. (2005) Biochim. Biophys. Acta, 1708, 275–282.PubMedCrossRefGoogle Scholar
  45. 45.
    Strasser, R. J., Srivastava, A., and Govindjee (1995) Photochem. Photobiol., 61, 32–42.Google Scholar
  46. 46.
    Velthuys, B. R., and Amesz, J. (1974) Biochim. Biophys. Acta, 333, 85–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Krieger-Lizskay, A., and Rutherford, A. W. (1998) Biochemistry, 37, 17339–17344.CrossRefGoogle Scholar
  48. 48.
    Sigfridsson, K. G. V., Bernat, G., Mamedov, F., and Styring, S. (2004) Biochim. Biophys. Acta, 1659, 19–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Faller, P., Kienzler, K., and Krieger-Lindskay, A. (2005) Biochim. Biophys. Acta, 1706, 158–164.PubMedCrossRefGoogle Scholar
  50. 50.
    Bernier, M., Popovic, R., and Carpentier, R. (1993) FEBS Lett., 321, 19–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Yruella, I., Gatzen, G., Picorel, R., and Holtzwarth, A. R. (1996) Biochemistry, 35, 9469–9474.CrossRefGoogle Scholar
  52. 52.
    Jegerschold, C., Arrelano, J. B., Schroder, W. P., van Kan, P. J. M., Baron, M., and Styring, S. (1995) Biochemistry, 34, 12747–12754.PubMedCrossRefGoogle Scholar
  53. 53.
    Gutknecht, J. (1981) J. Membr. Biol., 61, 61–66.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • B. K. Semin
    • 1
    • 2
    Email author
  • L. N. Davletshina
    • 1
  • A. A. Bulychev
    • 1
  • I. I. Ivanov
    • 1
  • M. Seibert
    • 2
  • A. B. Rubin
    • 1
  1. 1.Department of Biophysics, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Energy SciencesNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations