Biochemistry (Moscow)

, Volume 72, Issue 11, pp 1187–1193

Bioinformatical and experimental approaches to investigation of transcription factor binding sites in vertebrate genes

  • T. I. Merkulova
  • D. Yu. Oshchepkov
  • E. V. Ignatieva
  • E. A. Ananko
  • V. G. Levitsky
  • G. V. Vasiliev
  • N. V. Klimova
  • V. M. Merkulov
  • N. A. Kolchanov
Review

Abstract

The development of computer-assisted methods for transcription factor binding sites (TFBS) recognition is necessary for study the DNA regulatory transcription code. There are a great number of experimental methods that enable TFBS identification in genome sequences. The experimental data can be used to elaborate multiple computer approaches to recognition of TFBS, each of which has its own advantages and limitations. A short review of the characteristics of computer methods of TFBS prediction based on various principles is presented. Methods used for experimental monitoring of predicted sites are analyzed. Data concerning DNA regulatory potential and its realization at the chromatin level, obtained using these methods, are discussed along with approaches to recognition of target genes of certain transcription factors in the genome sequences.

Key words

genome annotation recognition of transcription factor binding sites computer and experimental methods databases training samples 

Abbreviations

ChIP

chromatin immunoprecipitation

EMSA

electromobility shift assay

GRE

glucocorticoid-responsive element

SAGE

serial analysis of gene expression

TF

transcription factor

TFBS

transcription factor binding site

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Latchman, D. S. (2004) in Eukaryotic Transcription Factors, Elsevier Academic Press, N. Y., pp. 299–330.Google Scholar
  2. 2.
    Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss N., Stegmaier, P., Lewicki-Potapov, B., Saxel, H., Kel, A. E., and Wingender, E. (2006) Nucleic Acids Res., 34, D108–D110.PubMedCrossRefGoogle Scholar
  3. 3.
    Kolchanov, N. A., Ignatieva, E. V., Ananko, E. A., Podkolodnaya, O. A., Stepanenko, I. L., Merkulova, T. I., Pozdnyakov, M. A., Podkolodny, N. L., Naumochkin, A. N., and Romashchenko, A. G. (2002) Nucleic Acids Res., 30, 312–317.PubMedCrossRefGoogle Scholar
  4. 4.
    Wenger, R. H., Stiehl, D. P., and Camenisch, G. (2005) Sci. STKE, 306, rel. 2.Google Scholar
  5. 5.
    Platanias, L. C. (2005) Nat. Rev. Immunol., 5, 375–386.PubMedCrossRefGoogle Scholar
  6. 6.
    Ho Su, S. J., Mortimer, J. R., Arenillas, D. J., Brumm, J., Walsh, C. J., Kennedy, B. P., and Wasserman, W. W. (2005) Nucleic Acids Res., 33, 3154–3164.CrossRefGoogle Scholar
  7. 7.
    Li, X., Zhong, S., and Wong, W. H. (2005) Proc. Natl. Acad. Sci. USA, 102, 16945–16950.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang, L. W., Nagarajan, R., Magee, J. A., Milbrandt, J., and Stormo, G. D. (2006) Genome Res., 16, 405–413.PubMedCrossRefGoogle Scholar
  9. 9.
    Holloway, D. T., Kon, M., and DeLisi, C. (2005) Genome Infor., 16, 83–94.Google Scholar
  10. 10.
    Tronche, F., Ringeisen, F., Blumenfeld, M., Yaniv, M., and Pontoglio, M. (1997) J. Mol. Biol., 266, 231–245.PubMedCrossRefGoogle Scholar
  11. 11.
    Kel, A. E., Kel-Margoulis, O. V., Farnham, P. J., Bartley, S. M., Wingender, E., and Zhang, M. Q. (2001) J. Mol. Biol., 309, 99–120.PubMedCrossRefGoogle Scholar
  12. 12.
    Klimova, N. V., Levitsky, V. G., Ignatieva, E. V., Vasiliev, G. V., Kobzev, V. F., Busygina, T. V., Merkulova, T. I., and Kolchanov, N. A. (2006) Mol. Biol. (Moscow), 40, 512–523.Google Scholar
  13. 13.
    Ignatieva, E. V., Klimova, N. V., Oshchepkov, D. Yu., Vasiliev, G. V., Merkulova, T. I., and Kolchanov, N. A. (2007) Doklady Akad. Nauk, 415, 1–8.Google Scholar
  14. 14.
    Jiang, C., Xuan, Z., Zhao, F., and Zhang, M. Q. (2007) Nucleic Acids Res., 35, D137–D140.PubMedCrossRefGoogle Scholar
  15. 15.
    Ghosh, D. (2000) Nucleic Acids Res., 28, 308–310.PubMedCrossRefGoogle Scholar
  16. 16.
    Sun, H., Palaniswamy, S. K., Pohar, T. T., Jin, V. X., Huang, T. H., and Davuluri, R. V. (2006) Nucleic Acids Res., 34, D98–D103.PubMedCrossRefGoogle Scholar
  17. 17.
    Jonat, C., Rahmsdorf, H. J., Park, K. K., Cato, A. C., Gebel, S., Ponta, H., and Herrlich, P. (1990) Cell, 62, 1189–1204.PubMedCrossRefGoogle Scholar
  18. 18.
    Stoecklin, E., Wissler, M., Moriggl, R., and Groner, B. (1997) Mol. Cell. Biol., 17, 6708–6716.PubMedGoogle Scholar
  19. 19.
    Song, C. Z., Tian, X., and Gelehter, T. D. (1999) Proc. Natl. Acad. Sci. USA, 96, 11776–11781.PubMedCrossRefGoogle Scholar
  20. 20.
    Vlieghe, D., Sandelin, A., de Bleser, P. J., Vleminckx, K., Wasserman, W. W., van Roy, F., and Lenhard, B. (2006) Nucleic Acids Res., 34, D95–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Khlebodarova, T., Podkolodnaya, O., Oshchepkov, D., Miginsky, D., Ananko, E., and Ignatieva, E. (2006) in Bioinformatics of Genome Regulation and Structure II (Kolchanov, N., and Hofestaedt, R., eds.) Springer Science+Business Media, Inc., N. Y. pp. 55–65.CrossRefGoogle Scholar
  22. 22.
    Merkulov, V. M., and Merkulova, T. I. (2006) Ekol. Genet. (Moscow), 4, 20–31.Google Scholar
  23. 23.
    O’Lone, R., Frith, M. C., Karlsson, E. K., and Hansen, U. (2004) Mol. Endocrinol., 18, 1859–1875.PubMedCrossRefGoogle Scholar
  24. 24.
    Roulet, E., Bucher, P., Schneider, R., Wingender, E., Dusserre, Y., Werner, T., and Mermod, N. (2000) J. Mol. Biol., 297, 833–848.PubMedCrossRefGoogle Scholar
  25. 25.
    Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., and Claessens, F. (1999) Biochem. J., 341, 515–521.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, J. B., Spotts, G. D., Halvorsen, Y. D., Shih, H. M., Ellenberger, T., Towle, H. C., and Spiegelman, B. M. (1995) Mol. Cell. Biol., 15, 2582–2588.PubMedGoogle Scholar
  27. 27.
    Khorasanizadeh, S., and Rastinejad, F. (2001) Trends Biochem. Sci., 26, 384–390.PubMedCrossRefGoogle Scholar
  28. 28.
    Okuno, M., Arimoto, E., Ikenobu, Y., Nishihara, T., and Imagawa, M. (2001) Biochem. J., 353, 193–198.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Brien, C. A., and Manolagas, S. C. (1997) J. Biol. Chem., 272, 15003–15010.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, H., Lee, J. M., Zong, Y., Borowitz, M., Ng, M. H., Ambinder, R. F., and Hayward, S. D. (2001) J. Virol., 75, 2929–2937.PubMedCrossRefGoogle Scholar
  31. 31.
    Stormo, G. D., Schneider, T. D., and Gold, L. (1986) Nucleic Acids Res., 14, 6661–6679.PubMedCrossRefGoogle Scholar
  32. 32.
    Berg, O. G., and von Hippel, P. H. (1987) J. Mol. Biol., 193, 723–750.PubMedCrossRefGoogle Scholar
  33. 33.
    Mulligan, M. E., Hawley, D. K., and Entriken, R. (1984) Nucleic Acids Res., 12, 789–800.PubMedCrossRefGoogle Scholar
  34. 34.
    Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T. (2005) Bioinformatics, 21, 2933–2942.PubMedCrossRefGoogle Scholar
  35. 35.
    Roulet, E., Fisch, I., Junier, T., and Mermod, N. (1998) In Silico Biol., 1, 21–28.PubMedGoogle Scholar
  36. 36.
    Tompa, M., Li, N., Bailey, T. L., Church, G. M., de Moor, B., Eskin, E., Favorov, A. V., Frith, M. C., Fu, Y., Kent, W. J., Makeev, V. J., Mironov, A. A., Noble, W. S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., and Zhu, Z. (2005) Nat. Biotechnol., 23, 137–144.PubMedCrossRefGoogle Scholar
  37. 37.
    Sandelin, A., and Wasserman, W. W. (2005) Mol. Endocrinol., 19, 595–606.PubMedCrossRefGoogle Scholar
  38. 38.
    Man, T. K., and Stormo, G. D. (2001) Nucleic Acids Res., 29, 2471–2478.PubMedCrossRefGoogle Scholar
  39. 39.
    Bulyk, M. L., Johnson, P. L., and Church, G. M. (2002) Nucleic Acids Res., 30, 1255–1261.PubMedCrossRefGoogle Scholar
  40. 40.
    Barash, Y., Elidan, G., Kaplan, T., and Friedman, N. (2003) RECOMB, 28–37.Google Scholar
  41. 41.
    Zhang, M., and Marr, T. (1993) Comput. Appl. Biosci., 9, 499–509.PubMedGoogle Scholar
  42. 42.
    Gershenzon, N. I., Stormo, G. D., and Ioshikhes, I. P. (2005) Nucleic Acids Res., 33, 2290–2301.PubMedCrossRefGoogle Scholar
  43. 43.
    Gorin, A. A., Zhurkin, V. B., and Olson, W. K. (1995) J. Mol. Biol., 247, 34–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Starr, D. B., Hoopes, B. C., and Hawley, D. K. (1995) J. Mol. Biol., 250, 434–446.PubMedCrossRefGoogle Scholar
  45. 45.
    Meierhans, D., Sieber, M., and Allemann, R. K. (1997) Nucleic Acids Res., 25, 4537–4544.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu, R., Blackwell, T. W., and States, D. J. (2001) Bioinformatics, 17, 622–633.PubMedCrossRefGoogle Scholar
  47. 47.
    Arauzo-Bravo, M. J., and Sarai, A. (2005) Genome Inform., 16, 12–21.PubMedGoogle Scholar
  48. 48.
    Oshchepkov, D. Y., Vityaev, E. E., Grigorovich, D. A., Ignatieva, E. V., and Khlebodarova, T. M. (2004) Nucleic Acids Res., 32, W208–W212.PubMedCrossRefGoogle Scholar
  49. 49.
    Oshchepkov, D. Yu., Turnaev, I. I., Pozdnyakov, M. A., Milanesi, L., Vityaev, E. E., and Kolchanov, N. A. (2004) in Bioinformatics of Genome Regulation and Structure (Kolchanov, N., and Hofestaedt, R., eds.) Kluwer Academic Publishers, Boston-Dordrecht-London, pp. 93–102.Google Scholar
  50. 50.
    Durbin, R., Eddy, S., and Krogh, A. G. M. (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.Google Scholar
  51. 51.
    Eddy, S. R. (1998) Bioinformatics, 14, 755–763.PubMedCrossRefGoogle Scholar
  52. 52.
    Laudet, V., Auwerx, J., Gustafsson, J., and Wahli, W. (1999) Cell, 97, 161–163.CrossRefGoogle Scholar
  53. 53.
    Gunewardena, S., Jeavons, P., and Zhang, Z. (2006) J. Comput. Biol., 13, 929–945.PubMedCrossRefGoogle Scholar
  54. 54.
    Levitsky, V. G., Ignatieva, E. V., Ananko, E. A., Merkulova, T. I., Kolchanov, N. A., and Hodzhman, T. S. (2006) Biofizika, 51, 633–639.Google Scholar
  55. 55.
    Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F., and Wootton, J. C. (1993) Science, 262, 208–214.PubMedCrossRefGoogle Scholar
  56. 56.
    Bailey, T. L., and Elkan, C. (1995) Proc. Int. Conf. Intell. Syst. Mol. Biol., 3, 1–29.Google Scholar
  57. 57.
    Grundy, W. N., Bailey, T. L., Elkan, C. P., and Baker, M. E. (1997) Comput. Appl. Biosci., 13, 397–406.PubMedGoogle Scholar
  58. 58.
    O’Neill, M. C. (1991) Nucleic Acids Res., 19, 313–318.PubMedCrossRefGoogle Scholar
  59. 59.
    Elnitski, L., Jin, V. X., Farnham, J., and Jones, J. (2006) Genome Res., 16, 1455–1464.PubMedCrossRefGoogle Scholar
  60. 60.
    Gelfand, S. (1995) J. Comput. Biol., 2, 87–115.PubMedCrossRefGoogle Scholar
  61. 61.
    Stoeckert, C. J., Jr., Salas, F., Brunk, B., and Overton, G. C. (1999) Nucleic Acids Res., 27, 200–203.PubMedCrossRefGoogle Scholar
  62. 62.
    Kel, A. E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O. V., and Wingender, E. (2003) Nucleic Acids Res., 31, 3576–3579.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen, Q. K., Hertz, G. Z., and Stormo, G. D. (1995) Comput. Appl. Biosci., 11, 563–566.PubMedGoogle Scholar
  64. 64.
    Kim, J. W., Zeller, K. I., Wang, Y., Jegga, A. G., Aronow, B. J., O’Donnell, K. A., and Dang, C. V. (2004) Mol. Cell. Biol., 24, 5923–5936.PubMedCrossRefGoogle Scholar
  65. 65.
    Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A. J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., and Gingeras, T. R. (2004) Cell, 116, 499–509.PubMedCrossRefGoogle Scholar
  66. 66.
    Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y., Weng, Z., Liu, J., Zhao, X. D., Chew, J. L., Lee, Y. L., Kuznetsov, V. A., Sung, W. K., Miller, L. D., Lim, B., Liu, E. T., Yu, Q., Ng, H. H., and Ruan, Y. (2006) Cell, 124, 207–219.PubMedCrossRefGoogle Scholar
  67. 67.
    Euskirchen, G., Royce, T. E., Bertone, P., Martone, R., Rinn, J. L., Nelson, F. K., Sayward, F., Luscombe, N. M., Miller, P., Gerstein, M., Weissman, S., and Snyder, M. (2004) Mol. Cell. Biol., 24, 3804–3814.PubMedCrossRefGoogle Scholar
  68. 68.
    Hagiwara, M., Brindle, P., Harootunian, A., Armstrong, R., Rivier, J., Vale, W., Tsien, R., and Montminy, M. R. (1993) Mol. Cell. Biol., 13, 4852–4859.PubMedGoogle Scholar
  69. 69.
    Liu, R., McEachin, R. C., and States, D. J. (2003) Genome Res., 13, 654–661.PubMedCrossRefGoogle Scholar
  70. 70.
    Kel, A., Kel-Margoulis, O., Babenko, V., and Wingender, E. (1998) J. Mol. Biol., 288, 353–376.CrossRefGoogle Scholar
  71. 71.
    Krivan, W., and Wasserman, W. W. (2001) Genome Res., 11, 1559–1556.PubMedCrossRefGoogle Scholar
  72. 72.
    Ananko, E. A., Kondrakhin, Y. V., Merkulova, T. I., and Kolchanov, N. A. (2007) BMC Bioinformatics, 8, 56.PubMedCrossRefGoogle Scholar
  73. 73.
    Lemay, D. G., and Hwang, D. H. (2006) J. Lipid Res., 47, 1583–1587.PubMedCrossRefGoogle Scholar
  74. 74.
    Le Phuc, P., Friedman, J. R., Schug, J., Brestelli, J. E., Parker, J. B., Bochkis, I. M., and Kaestner, K. H. (2005) PLoS Genet., 1(2):e16 (0159-170).Google Scholar
  75. 75.
    Beato, M., and Eisfeld, K. (1997) Nucleic Acids Res., 25, 3559–3563.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • T. I. Merkulova
    • 1
    • 2
  • D. Yu. Oshchepkov
    • 1
    • 2
  • E. V. Ignatieva
    • 1
    • 2
  • E. A. Ananko
    • 1
  • V. G. Levitsky
    • 1
    • 2
  • G. V. Vasiliev
    • 1
  • N. V. Klimova
    • 1
  • V. M. Merkulov
    • 1
  • N. A. Kolchanov
    • 1
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations