Biochemistry (Moscow)

, Volume 72, Issue 10, pp 1056–1064 | Cite as

Peroxidase activity of mitochondrial cytochrome c oxidase

Article

Abstract

Mitochondrial cytochrome c oxidase is able to oxidize various aromatic compounds like o-dianisidine, benzidine and its derivatives (diaminobenzidine, etc.), p-phenylenediamine, as well as amidopyrine, melatonin, and some other pharmacologically and physiologically active substances via the peroxidase, but not the oxidase mechanism. Although specific peroxidase activity of cytochrome c oxidase is low compared with classical peroxidases, its activity may be of physiological or pathophysiological significance due to the presence of rather high concentrations of this enzyme in all tissues, as well as specific localization of the enzyme in the mitochondrial membrane favoring accumulation of hydrophobic aromatic substances.

Key words

the oxygenase theory of A. N. Bach respiratory chain peroxidase activity aromatic substrates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babcock, G. T., and Wikstrom, M. (1992) Nature, 356, 301–309.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferguson-Miller, S., and Babcock, G. T. (1996) Chem. Rev., 7, 2889–2907.CrossRefGoogle Scholar
  3. 3.
    Richter, O.-M. H., and Ludwig, B. (2003) Rev. Physiol. Biochem. Pharmacol., 147, 47–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Gennis, R. B. (2005) in Biophysical and Structural Aspects of Bioenergetics (Wikstrom, M., ed.) RSC Publishing, Norfolk, pp. 1–24.Google Scholar
  5. 5.
    Wikstrom, M. (2004) Biochim. Biophys. Acta, 1655, 241–247.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.PubMedCrossRefGoogle Scholar
  7. 7.
    Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Nature, 376, 660–669.PubMedCrossRefGoogle Scholar
  8. 8.
    Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) J. Mol. Biol., 321, 329–339.PubMedCrossRefGoogle Scholar
  9. 9.
    Soulimane, T., Buse, G., Bourenkov, G. B., Bartunik, H. D., Huber, R., and Than, M. E. (2000) EMBO J., 19, 1766–1776.PubMedCrossRefGoogle Scholar
  10. 10.
    Einarsdottir, O., and Szundi, I. (2004) Biochim. Biophys. Acta, 1655, 263–273.PubMedCrossRefGoogle Scholar
  11. 11.
    Bloch, D., Belevich, I., Jasaitis, A., Ribacka, C., Puustinen, A., Verkhovsky, M. I., and Wikstrom, M. (2004) Proc. Natl. Acad. Sci. USA, 101, 529–533.PubMedCrossRefGoogle Scholar
  12. 12.
    Jancura, D., Berka, V., Antalik, M., Bagelova, J., Gennis, R. B., Palmer, G., and Fabian, M. (2006) J. Biol. Chem., 281, 30319–30325.PubMedCrossRefGoogle Scholar
  13. 13.
    Konstantinov, A. A., Siletskiy, S. A., Mitchell, D., Kaulen, A. D., and Gennis, R. B. (1997) Proc. Natl. Acad. Sci. USA, 94, 9085–9090.PubMedCrossRefGoogle Scholar
  14. 14.
    Konstantinov, A. A., Vygodina, T. V., Capitanio, N., and Papa, S. (1998) Biochim. Biophys. Acta, 1363, 11–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Konstantinov, A. (1998) J. Bioenerg. Biomembr., 30, 121–130.PubMedCrossRefGoogle Scholar
  16. 16.
    Bach, A. N., and Chodat, R. (1902) Ber. Deutsch. Chem. Gesell., 35, 2466–2470.CrossRefGoogle Scholar
  17. 17.
    Baek, H. K., and van Wart, H. E. (1989) Biochemistry, 28, 5714–5719.PubMedCrossRefGoogle Scholar
  18. 18.
    Blomberg, M., Siegbahn, P. E. M., Babcock, G. T., and Wikstrom, M. (2000) J. Inorg. Chem., 80, 1238–1243.Google Scholar
  19. 19.
    Qin, L., Hiser, C., Mulichak, A., Garavito, R. M., and Ferguson-Miller, S. (2006) Proc. Natl. Acad. Sci. USA, 103, 16117–16122.PubMedCrossRefGoogle Scholar
  20. 20.
    Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. L. (2000) Science, 2000, 1588–1591.CrossRefGoogle Scholar
  21. 21.
    Vygodina, T. V., Capitanio, N., Papa, S., and Konstantinov, A. A. (1997) FEBS Lett., 412, 405–409.PubMedCrossRefGoogle Scholar
  22. 22.
    Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry, 37, 3053–3061.PubMedCrossRefGoogle Scholar
  23. 23.
    Orii, Y. (1982) J. Biol. Chem., 257, 9246–9248.PubMedGoogle Scholar
  24. 24.
    Orii, Y. (1982) in Oxygenases and Oxygen Metabolism (Nozaki, M., et al., eds.) Academic Press, N. Y., pp. 137–149.Google Scholar
  25. 25.
    Miki, T., and Orii, Y. (1986) J. Biochem., 100, 735–745.PubMedGoogle Scholar
  26. 26.
    Miki, T., and Orii, Y. (1986) J. Biol. Chem., 261, 3915–3918.PubMedGoogle Scholar
  27. 27.
    Zaslavsky, D., Smirnova, I. A., Adelroth, P., Brzezinsky, P., and Gennis, R. B. (1999) Biochemistry, 38, 2307–2311.PubMedCrossRefGoogle Scholar
  28. 28.
    Wikstrom, M. (1989) Nature, 338, 776–778.PubMedCrossRefGoogle Scholar
  29. 29.
    Wikstrom, M., and Morgan, J. E. (1992) J. Biol. Chem., 267, 10266–10273.PubMedGoogle Scholar
  30. 30.
    Bergmayer, H. U., Gawehn, K., and Grassl, M. (1970) in Methoden der Enzymatischen Analyze (Bergmayer, H. U., ed.) Verlag Chemie, Weinheim, pp. 440.Google Scholar
  31. 31.
    Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) Biochim. Biophys. Acta, 64, 170–173.PubMedCrossRefGoogle Scholar
  32. 32.
    MacLennan, D. H., and Tzagoloff, A. (1965) Biochim. Biophys. Acta, 96, 166–168.PubMedGoogle Scholar
  33. 33.
    Musatov, A. P., Berka, V., Ksenzenko, M. Y., Vygodina, T. V., and Konstantinov, A. A. (1991) Biol. Membr. (Moscow), 8, 229–234.Google Scholar
  34. 34.
    Metelitza, D., Shibaev, V., Eryomin, A., Melnik, V., and Zhilina, Z. (1995) Biochemistry (Moscow), 60, 257–268.Google Scholar
  35. 35.
    Kachurin, A. M., Kropachev, E. V., Iogannsen, M. G., and Petrov, A. S. (1991) Biokhimiya, 56, 1768–1778.Google Scholar
  36. 36.
    Chouchane, S., Lippai, I., and Magliozzo, R. S. (2000) Biochemistry, 39, 9975–9983.PubMedCrossRefGoogle Scholar
  37. 37.
    Pandi-Perumal, S. R., Srinivasan, V., Maestroni, G. J. M., Cardinali, D. P., Poeggeler, B., and Hardeland, R. (2006) FEBS J., 273, 2813–2838.PubMedCrossRefGoogle Scholar
  38. 38.
    Allegra, M., Furtmuller, P. G., Regelsberger, G., Turco-Liveri, M. L., Tesoriere, L., Peerretti, M., Livrea, M. A., and Obinger, C. (2001) Biochem. Biophys. Res. Commun., 282, 380–386.PubMedCrossRefGoogle Scholar
  39. 39.
    Arnhold, J., Furtmuller, P. G., Regelsberger, G., and Obinger, C. (2001) Eur. J. Biochem., 268, 5142–5148.PubMedCrossRefGoogle Scholar
  40. 40.
    Vygodina, T. V., and Konstantinov, A. A. (1987) FEBS Lett., 219, 387–392.PubMedCrossRefGoogle Scholar
  41. 41.
    Wikstrom, M. (1981) Proc. Natl. Acad. Sci. USA, 78, 4051–4054.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations