Biochemistry (Moscow)

, Volume 72, Issue 10, pp 1039–1046

The oxygenase-peroxidase theory of Bach and Chodat and its modern equivalents: Change and permanence in scientific thinking as shown by our understanding of the roles of water, peroxide, and oxygen in the functioning of redox enzymes

Review
  • 43 Downloads

Abstract

Alexander Bach was both revolutionary politician and biochemist. His earliest significant publication, “Tsargolod” (“The Tsar of Hunger”), introduced Marxist thought to Russian workers. In exile for 30 years, he moved to study the dialectic of the oxidases. When his theory of oxidases as combinations of oxygenases and peroxidases was developed (circa 1900) the enzyme concept was not fully formulated, and the enzyme/substrate distinction not yet made. Peroxides however were then and remain now significant intermediates, when either free or bound, in oxidase catalyses. The aerobic dehydrogenase/peroxidase/catalase coupled systems which were studied slightly later clarified the Bach model and briefly became an oxidase paradigm. Identification of peroxidase as a metalloprotein, a key step in understanding oxidase and peroxidase mechanisms, postdated Bach’s major work. Currently we recognize catalytic organic peroxides in flavoprotein oxygenases; such organic peroxides are also involved in lipid oxidation and tryptophan radical decay. But most physiologically important peroxides are now known to be bound to transition metals (either Fe or Cu) and formed both directly and indirectly (from oxygen). The typical stable metalloprotein peroxide product is the ferryl state. When both peroxide oxidizing equivalents are retained the second equivalent is held as a protein or porphyrin radical. True metal peroxide complexes are unstable. But often water molecules mark the spot where the original peroxide decayed. The cytochrome c oxidase Fe-Cu center can react with either peroxide or oxygen to form the intermediate higher oxidation states P and F. In its resting state water molecules and hydroxyl ions can be seen marking the original location of the oxygen or peroxide molecule.

Key words

peroxidase oxygenase cytochrome oxidase heme proteins oxygen intermediates Bach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamin, A. N. (1970) A. N. Bach, in Dict. Scient. Biography, Vol. 1, pp. 360–363 (Scribner’s).Google Scholar
  2. 2.
    Popov, V. O., and Zvyagilskaya, R. A. (2007) Biochemistry (Moscow), 72, 1029–1038.CrossRefGoogle Scholar
  3. 3.
    Bach, A. N. (1895) The Tsar of Hunger [in Russian], published by Narodnya Volya group.Google Scholar
  4. 4.
    Nekrasov, N. A. (1864) The Rail Road [in Russian].Google Scholar
  5. 5.
    Pearl, D. L. (1991) Slavic Review, 50, 768–778.CrossRefGoogle Scholar
  6. 6.
    Bach, A. N., and Chodat, R. (1902) Ber. Deutsch. Chem. Gesell., 35, 2466–2470.CrossRefGoogle Scholar
  7. 7.
    Bach, A. N., and Nikolajew, K. A. (1926) Biochem. Zs., 169, 105–112.Google Scholar
  8. 8.
    Bach, A. N. (1939) Planning Science, Izd-vo Inostrannykh Yazykov, Moscow.Google Scholar
  9. 9.
    Kastle, J. H. (1910) The Oxidases. Hygienic Laboratory Bull., 59, Treasury Department, Washington.Google Scholar
  10. 10.
    Chodat, R., and Bach, A. (1904) Ber. Deutsch. Chem. Gesell., 37, 36–43.CrossRefGoogle Scholar
  11. 11.
    Gallagher, P. H. (1923) Biochem. J., 17, 515–529.PubMedGoogle Scholar
  12. 12.
    Planche, L. A. (1810) Bull. de Pharmacie, 2, 578–580.Google Scholar
  13. 13.
    Michaelis, L., and Menten, M. L. (1913) Biochem. Z., 49, 333.Google Scholar
  14. 14.
    Loew, O. (1901) Catalase, a New Enzym of General Occurrence, Report No. 68, US Dept. Agriculture, Washington.Google Scholar
  15. 15.
    Bach, A., and Chodat, R. (1903) Ber. Deutsch. Chem. Gesell., 36, 1756–1761.CrossRefGoogle Scholar
  16. 16.
    Thurlow, S. (1925) Biochem. J., 19, 175–187.PubMedGoogle Scholar
  17. 17.
    Harrison, D. C., and Thurlow, S. (1926) Biochem. J., 20, 217–231.PubMedGoogle Scholar
  18. 18.
    Keilin, D., and Hartree, E. F. (1955) Biochem. J., 60, 310–325.PubMedGoogle Scholar
  19. 19.
    Chodat, R., and Bach, A. (1903) Ber. Deutsch. Chem. Gesell., 36, 606–608.CrossRefGoogle Scholar
  20. 20.
    Keilin, D. (1925) Proc. Roy. Soc. B, 98, 312–339.CrossRefGoogle Scholar
  21. 21.
    Stankovich, M. Y., Schopfer, L. M., and Massey, V. (1978) J. Biol. Chem., 253, 4971–4979.PubMedGoogle Scholar
  22. 22.
    Nicholls, P. (1964) Biochim. Biophys. Acta, 81, 479–495.PubMedGoogle Scholar
  23. 23.
    Bruice, T. C. (1980) Acc. Chem. Res., 13, 256–262.CrossRefGoogle Scholar
  24. 24.
    Massey, V. (1994) J. Biol. Chem., 269, 22459–22462.PubMedGoogle Scholar
  25. 25.
    Ghisla, S., and Massey, V. (1989) Eur. J. Biochem., 181, 1–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Alfieri, A., Fersini, F., Ruangchan, N., Prongjit, M., Chaiyen, P., and Mattevi, A. (2007) Proc. Natl. Acad. Sci. USA, 104, 1177–1182.PubMedCrossRefGoogle Scholar
  27. 27.
    Bach, A. N. (1908) Ber. Dtsch. Chem. Gesell., 41, 221–225.CrossRefGoogle Scholar
  28. 28.
    Kubowitz, F. (1937) Biochemisch. Z., 292, 221–229.Google Scholar
  29. 29.
    Keilin, D., and Mann, T. (1938) Proc. Roy. Soc. B, 125, 187–204.Google Scholar
  30. 30.
    Siegbahn, P. E. M. (2004) J. Biol. Inorg. Chem., 9, 577–590.PubMedCrossRefGoogle Scholar
  31. 31.
    Klabunde, T., Eicken, C., Sacchettini, J., and Krebs, B. (1998) Nature Struct. Biol., 5, 1084–1090.PubMedCrossRefGoogle Scholar
  32. 32.
    Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H., and Sugiyama, M. (2006) J. Biol. Chem., 281, 8981–8990.PubMedCrossRefGoogle Scholar
  33. 33.
    Whittaker, J. W. (1999) in Essays in Biochemistry, Vol. 34, Metalloproteins, Portland Press, London, pp. 155–172.Google Scholar
  34. 34.
    George, P., and Irvine, D. H. (1954) Br. J. Radiol., 27, 131–137.PubMedGoogle Scholar
  35. 35.
    Hlavica, P. (2004) Eur. J. Biochem., 271, 4335–4360.PubMedCrossRefGoogle Scholar
  36. 36.
    Nagano, S., and Poulos, T. L. (2005) J. Biol. Chem., 280, 31659–31663.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, W. L., and Marnett, L. J. (1991) Biochim. Biophys. Acta, 1083, 1–17.PubMedGoogle Scholar
  38. 38.
    Wu, G., Rogge, C. E., Wang, J. S., Kulmacz, R. J., Palmer G., and Tsai, A. L. (2007) Biochemistry, 46, 534–542.PubMedCrossRefGoogle Scholar
  39. 39.
    Wittenberg, J. B., Noble, R. W., Wittenberg, B. A., Antonini, E., Brunori, M., and Wyman, J. (1967) J. Biol. Chem., 242, 626–634.PubMedGoogle Scholar
  40. 40.
    Phelps, C. F., Antonini, E., Giacometti, G., and Brunori, M. (1974) Biochem. J., 141, 265–272.PubMedGoogle Scholar
  41. 41.
    Adediran, S. A., and Lambeir, A. (1989) Eur. J. Biochem., 186, 571–576.PubMedCrossRefGoogle Scholar
  42. 42.
    Rodriguez-Lopez, J. N., Smith, A. T., and Thorneley, R. N. F. (1997) J. Biol. Chem., 272, 389–395.PubMedCrossRefGoogle Scholar
  43. 43.
    Chance, B. (1952) J. Biol. Chem., 197, 577–589.PubMedGoogle Scholar
  44. 44.
    Nicholls, P. (1962) in The Oxygenases (Hayaishi, O., ed.) Academic Press, New York, pp. 263–305.Google Scholar
  45. 45.
    Michaelis, L. (1932) J. Biol. Chem., 96, 703–715.Google Scholar
  46. 46.
    Gibson, J. F., Nicholls, P., and Ingram, D. J. E. (1958) Nature, 181, 1398–1399.PubMedCrossRefGoogle Scholar
  47. 47.
    Yonetani, T., and Schleyer, H. (1966) J. Biol. Chem., 241, 3240–3243.PubMedGoogle Scholar
  48. 48.
    Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, R. H. (1971) Proc. Natl. Acad. Sci. USA, 68, 614–618.PubMedCrossRefGoogle Scholar
  49. 49.
    Baek, H. K., and van Wart, H. E. (1989) Biochemistry, 28, 5714–5719.PubMedCrossRefGoogle Scholar
  50. 50.
    Denisov, I. G., Makris, T. M., and Sligar, S. (2002) J. Biol. Chem., 277, 42706–42710.PubMedCrossRefGoogle Scholar
  51. 51.
    Kobert, R. (1900) Arch. Ges. Physiol. (Pfluger’s Arch.), 82, 603–630.CrossRefGoogle Scholar
  52. 52.
    George, P., and Irvine, D. H. (1952) Biochem. J., 52, 511–517.PubMedGoogle Scholar
  53. 53.
    King, N. K., and Winfield, M. E. (1963) J. Biol. Chem., 238, 1520–1527.PubMedGoogle Scholar
  54. 54.
    Svistunenko, D. (2005) Biochim. Biophys. Acta, 1707, 127–155.PubMedCrossRefGoogle Scholar
  55. 55.
    Egawa, T., Shimada, H., and Ishimura, Y. (2000) J. Biol. Chem., 275, 34858–34866.PubMedCrossRefGoogle Scholar
  56. 56.
    Egawa, T., Yoshioka, S., Takahashi, S., Hori, H., Nagano, S., Shimada, H., Ishimori, K., Morishima, I., Suematsu, M., and Ishimura, Y. (2003) J. Biol. Chem., 278, 41597–41606.PubMedCrossRefGoogle Scholar
  57. 57.
    Hersleth, H. P., Dalhus, B., Gorbitz, C. H., and Andersson, K. K. (2002) J. Biol. Inorg. Chem., 7, 299–304.PubMedCrossRefGoogle Scholar
  58. 58.
    Silaghi-Dumitrescu, R., Brandon, J., Reeder, B. J., Nicholls, P., Cooper, C. E., and Wilson, M. T. (2007) Biochem. J., 403, 391–395.PubMedCrossRefGoogle Scholar
  59. 59.
    Svistunenko, D. A., Reeder, B. J., Wankasi, M. M., Silaghi-Dumitrescu, R.-L., Cooper, C. E., Rinaldo, S., Cutruzzola, F., and Wilson, M. T. (2007) Roy. Soc. Chem. Dalton Trans., 840–850.Google Scholar
  60. 60.
    Wrigglesworth, J. M. (1984) Biochem. J., 217, 715–719.PubMedGoogle Scholar
  61. 61.
    Fabian, M., and Palmer, G. (1995) Biochemistry, 34, 13802–13810.PubMedCrossRefGoogle Scholar
  62. 62.
    Nicholls, P., Loewen, P., and Fita, I. (2001) Adv. Inorg. Chem., 51, 52–106.Google Scholar
  63. 63.
    Melik-Adamyan, W. R., Bravo, J., Carpena, X., Switala, J., Mate, M. J., Fita, I., and Loewen, P. C. (2001) Proteins: Struct. Funct., 44, 270–280.CrossRefGoogle Scholar
  64. 64.
    Gouet, P., Jouve, H. M., Williams, P. A., Andersson, I., Andreoletti, P., Nussaume, L., and Hajdu, J. (1996) Nature Struct. Biol., 3, 951–956.PubMedCrossRefGoogle Scholar
  65. 65.
    Berglund, G. I., Carlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A., and Hajdu, J. (2002) Nature, 417, 463–468.PubMedCrossRefGoogle Scholar
  66. 66.
    Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brezezinski, P., and Iwata, S. (2002) J. Mol. Biol., 321, 329–339.PubMedCrossRefGoogle Scholar
  67. 67.
    Qin, L., Hiser, C., Mulichak, A., Garavito, R. M., and Ferguson-Miller, S. (2006) Proc. Natl. Acad. Sci. USA, 103, 16117–16122.PubMedCrossRefGoogle Scholar
  68. 68.
    Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science, 280, 1723–1729.PubMedCrossRefGoogle Scholar
  69. 69.
    Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Department of Biological SciencesEssex UniversityColchesterU. K.

Personalised recommendations