Biochemistry (Moscow)

, Volume 72, Issue 9, pp 944–953 | Cite as

Molecular oxygen (a substrate of the cyclooxygenase reaction) in the kinetic mechanism of the bifunctional enzyme prostaglandin-H-synthase

  • I. S. Filimonov
  • P. V. Vrzheshch


Prostaglandin-H-synthase is a bifunctional enzyme catalyzing conversion of arachidonic acid into prostaglandin H2 as a result of cyclooxygenase and peroxidase reactions. The dependence of the rate of the cyclooxygenase reaction on oxygen concentration in the absence and in the presence of electron donor was determined. A two-dimensional kinetic scheme accounting for independent proceeding and mutual influence of the cyclooxygenase and peroxidase reactions and also for hierarchy of the rates of these reactions was used as a model. In the context of this model, it was shown that there are irreversible stages in the mechanism of the cyclooxygenase reaction between points of substrate donation (between donation of arachidonic acid and the first oxygen molecule and also between donation of two oxygen molecules).

Key words

prostaglandin-H-synthase bifunctional enzyme cyclooxygenase activity kinetic mechanism oxygen arachidonic acid adrenaline 



arachidonic acid


oxidized form of electron donor


reduced form of electron donor


prostaglandin G2


prostaglandin H2




protoporphyrin IX




tyrosine residue


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van der Donk, W. A., Tsai, A. L., and Kulmacz, R. J. (2002) Biochemistry, 41, 15451–15458.PubMedCrossRefGoogle Scholar
  2. 2.
    Kurumbail, R. G., Kiefer, J. R., and Marnett, L. J. (2001) Curr. Opin. Struct. Biol., 11, 752–760.PubMedCrossRefGoogle Scholar
  3. 3.
    Vane, J. R., Bakhle, Y. S., and Botting, R. M. (1998) Annu. Rev. Pharmacol. Toxicol., 38, 97–120.PubMedCrossRefGoogle Scholar
  4. 4.
    Vane, J. R., and Botting, R. M. (1997) Semin. Arthritis Rheum., 26, 2–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Miyamoto, T., Ogino, N., Yamamoto, S., and Hayaishi, O. (1976) J. Biol. Chem., 251, 2629–2636.PubMedGoogle Scholar
  6. 6.
    Smith, W. L., and Marnett, L. J. (1991) Biochim. Biophys. Acta, 1083, 1–17.PubMedGoogle Scholar
  7. 7.
    Lands, W. E. M., Sauter, J., and Stone, G. W. (1978) Biochem. Prostaglandins Med., 1, 117–120.CrossRefGoogle Scholar
  8. 8.
    Juranek, I., Suzuki, H., and Yamamoto, S. (1999) Biochim. Biophys. Acta, 1436, 509–518.PubMedGoogle Scholar
  9. 9.
    Bakovic, M., and Dunford, H. B. (1994) Biochemistry, 33, 6475–6482.PubMedCrossRefGoogle Scholar
  10. 10.
    Kulmacz, R. J., Pendleton, R. B., and Lands, W. E. M. (1994) J. Biol. Chem., 269, 5527–5536.PubMedGoogle Scholar
  11. 11.
    Swinney, D. C., Mak, A. Y., Barnett, J., and Ramesha, C. S. (1997) J. Biol. Chem., 272, 12393–12398.PubMedCrossRefGoogle Scholar
  12. 12.
    Hsuanyu, Y., and Dunford, H. B. (1992) J. Biol. Chem., 267, 17649–17657.PubMedGoogle Scholar
  13. 13.
    Vrzheshch, P. V. (1999) Biochemistry (Moscow), 64, 421–430.Google Scholar
  14. 14.
    Vrzheshch, P. V. (2007) Biochemistry (Moscow), 72, 936–943.CrossRefGoogle Scholar
  15. 15.
    Van der Ouderaa, F. J., Buytenhek, M., Nugteren, D. H., and van Dorp, D. A. (1977) Biochim. Biophys. Acta, 487, 315–331.PubMedGoogle Scholar
  16. 16.
    Mason, R. P., Kalyanaraman, B., Tainer, B. E., and Eling, T. E. (1980) J. Biol. Chem., 255, 5019–5022.PubMedGoogle Scholar
  17. 17.
    Karthein, R., Dietz, R., Nastainczyk, W., and Ruf, H. H. (1988) Eur. J. Biochem., 171, 313–320.PubMedCrossRefGoogle Scholar
  18. 18.
    Dietz, R., Nastainczyk, W., and Ruf, H. H. (1988) Eur. J. Biochem., 171, 321–328.PubMedCrossRefGoogle Scholar
  19. 19.
    Falk, J. E. (1964) in Porphyrins and Metalloporphyrins, Vol. 2, Elsevier, Amsterdam-New York-London, p. 181.Google Scholar
  20. 20.
    Frank, G. M., Kondrashova, M. N., Mokhova, E. N., and Rotenberg, Yu. S. (1973) Handbook for Polarographic Study of Biooxidation [in Russian], Nauka, Moscow.Google Scholar
  21. 21.
    Garavito, R. M., and Mulichak, A. M. (2003) Annu. Rev. Biophys. Biomol. Struct., 32, 183–206.PubMedCrossRefGoogle Scholar
  22. 22.
    Vrzheshch, P. V. (1996) Biochemistry (Moscow), 61, 1481–1493.Google Scholar
  23. 23.
    Vrzheshch, P. V., Batanova, E. A., Mevkh, A. T., Varfolomeev, S. D., Gazaryan, I. G., and Thorneley, R. N. F. (2003) Biochem. J., 372, 713–724.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu, G., Vuletich, J. L., Kulmacz, R. J., Osawa, Y., and Tsai, A. L. (2001) J. Biol. Chem., 276, 19879–19888.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsaplina, L. A., Karatasso, Yu. O., Filiminov, I. S., and Vrzheshch, P. V. (2006) Biochemistry (Moscow), 71, 1247–1255.CrossRefGoogle Scholar
  26. 26.
    Kulmacz, R. J., Tsai, A.-L., and Wei, C. (1995) Biochemistry, 34, 8499–8512.PubMedCrossRefGoogle Scholar
  27. 27.
    Bambai, B., and Kulmacz, R. J. (2000) J. Biol. Chem., 275, 27608–27614.PubMedGoogle Scholar
  28. 28.
    Song, I., Ball, T. M., and Smith, W. L. (2001) Biochem. Biophys. Res. Commun., 289, 869–875.PubMedCrossRefGoogle Scholar
  29. 29.
    Eling, T. E., Glasgow, W. C., Curtis, J. F., Hubbard, W. C., and Handler, J. A. (1991) J. Biol. Chem., 266, 12348–12355.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.International Biotechnological CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations