Biochemistry (Moscow)

, Volume 72, Issue 7, pp 744–749 | Cite as

Somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase: Comparative analysis of primary structures and functional features

Article

Abstract

The elucidation of the interdependence between structural features and functions of somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase (GAPD and GAPDS, respectively) was the goal of comparative analysis of their primary structures. GAPDS was shown to lack the sequence similar to the atypical nuclear export signal motif (NES) of the somatic isoenzyme GAPD. This finding is confirmed by experimental data on the absence of interaction between GAPDS and antibodies 6C5 recognizing the NES motif in the sequence of GAPD. The lack of NES correlates with functional peculiarities of the sperm-specific enzyme that is tightly bound to the fibrous sheath of the sperm flagellum. The sequences of the two isoenzymes were examined for the short motifs that might participate in apoptosis, endocytosis, and DNA repair. Sites of phosphorylation by different protein kinases have been revealed in both isoenzymes, and their characteristic features are discussed. These observations can serve as the basis for subsequent search for new ways of regulating the two isoenzymes.

Key words

glyceraldehyde-3-phosphate dehydrogenase spermatozoa nuclear export signal (NES) antibodies hidden Markov models 

Abbreviations

AP2

adaptor protein 2

APC

anaphase-promoting complex

CRM1

exportin-1

FS

frequency score

GAPD and GAPDS

somatic and sperm-specific glyceraldehydes-3-phosphate dehydroge nases, respectively

HMM

Hidden Markov Models

NES

nuclear export signal

SUMO-1

small ubiquitin-related modifier 1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robbins, A. R., Ward, R. D., and Oliver, C. (1995) J. Cell Biol., 130, 1093–1104.PubMedCrossRefGoogle Scholar
  2. 2.
    Glaser, P. E., and Gross, R. W. (1995) Biochemistry, 34, 12193–12203.PubMedCrossRefGoogle Scholar
  3. 3.
    Meyer-Siegler, K., Mauro, D. J., Seal, G., Wurzer, J., deRiel, J. K., and Sirover, M. A. (1991) Proc. Natl. Acad. Sci. USA, 88, 8460–8464.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, R. W., Saunders, P. A., Wei, H., Li, Z., Seth, P., and Chuang, D. M. (1999) J. Neurosci., 19, 9654–9662.PubMedGoogle Scholar
  5. 5.
    Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Biochem. Biophys. Res. Commun., 307, 547–552.PubMedCrossRefGoogle Scholar
  6. 6.
    Ishitani, R., Sunaga, K., Tanaka, M., Aishita, H., and Chuang, D. M. (1997) Mol. Pharmacol., 51, 542–550.PubMedGoogle Scholar
  7. 7.
    Ishitani, R., and Chuang, D. M. (1996) Proc. Natl. Acad. Sci. USA, 93, 9937–9941.PubMedCrossRefGoogle Scholar
  8. 8.
    Krynetski, E. Y., Krynetskaia, N. F., Bianchi, M. E., and Evans, W. E. (2003) Cancer Res., 63, 100–106.PubMedGoogle Scholar
  9. 9.
    Sonnhammer, E. L., Eddy, S. R., and Durbin, R. (1997) Proteins, 28, 405–420.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown, V. M., Krynetski, E. Y., Krynetskaia, N. F., Grieger, D., Mukatira, S. T., Murti, K. G., Slaughter, C. A., Park, H. W., and Evans, W. E. (2004) J. Biol. Chem., 279, 5984–5992.PubMedCrossRefGoogle Scholar
  11. 11.
    Grigorieva, J. A., Dainiak, M. B., Katrukha, A. G., and Muronetz, V. I. (1999) Arch. Biochem. Biophys., 369, 252–260.PubMedCrossRefGoogle Scholar
  12. 12.
    Krynetski, E. Y., Krynetskaia, N. F., Gallo, A. E., Murti, K. G., and Evans, W. E. (2001) Mol. Pharmacol., 59, 367–374.PubMedGoogle Scholar
  13. 13.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Nucleic Acids Res., 25, 3389–3402.PubMedCrossRefGoogle Scholar
  14. 14.
    Baldi, P., Chauvin, Y., Hunkapillar, T., and McClure, M. A. (1994) Proc. Natl. Acad. Sci. USA, 91, 1059–1063.PubMedCrossRefGoogle Scholar
  15. 15.
    Rice, P., Longden, I., and Bleasby, A. (2000) Trends Genet., 16, 276–277.PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.PubMedCrossRefGoogle Scholar
  17. 17.
    Balla, S., Thapar, V., Verma, S., Luong, T., Faghri, T., Huang, C. H., Rajasekaran, S., Campo, J. J., Shinn, J. H., Mohler, W. A., Maciejewski, M. W., Gryk, M. R., Piccirillo, B., Schiller, S. R., and Schiller, M. R. (2006) Nat. Meth., 3, 175–177.CrossRefGoogle Scholar
  18. 18.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., de Castro, E., Langendijk-Genevaux, P. S., Pagni, M., and Sigrist, C. J. A. (2006) Nucleic Acids Res., 34, 227–230.CrossRefGoogle Scholar
  19. 19.
    Bunch, D. O., Welch, J. E., Magyar, P. L., Eddy, E. M., and O’Brien, D. A. (1998) Biol. Reprod., 58, 834–841.PubMedCrossRefGoogle Scholar
  20. 20.
    Shchutskaja, Y. Y., Yurjeva, M. V., Bragina, E. E., and Schmalhausen, E. V. (2006) in Proc. of the Moscow Int. Conf. on Biotechnology and Medicine, Moscow, 2006, p. 218.Google Scholar
  21. 21.
    Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M. S., Davis, F. P., Stuart, A. C., Mirkovic, N., Rossi, A., Marti-Renom, M. A., Fiser, A., Webb, B., Greenblatt, D., Huang, C. C., Ferrin, T. E., and Sali, A. (2004) Nucleic Acids Res., 32, 217–222.CrossRefGoogle Scholar
  22. 22.
    Brett, T. J., Traub, L. M., and Fremont, D. H. (2002) Structure, 10, 797–809.PubMedCrossRefGoogle Scholar
  23. 23.
    Endter, C., Kzhyshkowska, J., Stauber, R., and Dobner, T. (2001) Proc. Natl. Acad. Sci. USA, 98, 11312–11317.PubMedCrossRefGoogle Scholar
  24. 24.
    Schofield, M. J., Brownewell, F. E., Nayak, S., Du, C., Kool, E. T., and Hsieh, P. (2001) J. Biol. Chem., 276, 45505–45508.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, S., Armstrong, C. M., Bertin, N., et al. (2004) Science, 303, 540–543.PubMedCrossRefGoogle Scholar
  26. 26.
    Sergienko, E. A., Kharitonenkov, A. I., Bulargina, T. V., Muronetz, V. I., and Nagradova, N. K. (1992) FEBS Lett., 304, 21–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Ashmarina, L. I., Louzenko, S. E., Severin, S. E., Muronetz, V. I., and Nagradova, N. K. (1988) FEBS Lett., 231, 413–416.PubMedCrossRefGoogle Scholar
  28. 28.
    Sergienko, E. A., Ermakova, A. A., Muronets, V. I., and Nagradova, N. K. (1993) Biochemistry (Moscow), 58, 415–423.Google Scholar
  29. 29.
    Gorbea, C., Goellner, G. M., Teter, K., Holmes, R. K., and Rechsteiner, M. (2004) J. Biol. Chem., 279, 54849–54861.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations