Biochemistry (Moscow)

, Volume 72, Issue 5, pp 518–528

Effect of α-crystallin on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle

  • A. V. Meremyanin
  • T. B. Eronina
  • N. A. Chebotareva
  • S. Yu. Kleimenov
  • I. K. Yudin
  • K. O. Muranov
  • M. A. Ostrovsky
  • B. I. Kurganov


Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that the rmal aggregation of proteins proceeds in the kinetic regime where in the rate of aggregation is limited by diffusion of the interacting particles (the regime of “diffusion-limited cluster-cluster aggregation”). In the presence of α-crystallin, a prote in exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of “reaction-limited cluster-cluster aggregation”). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of α-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that α-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of the rmal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.

Key words

glycogen phosphorylase b denaturation aggregation α-crystallin dynamic light scattering analytical ultracentrifugation 



differentiation scanning calorimetry


glycogen phosphorylase b


heat shock protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fink, A. L. (1998) Folding Des., 3, R9–R23.CrossRefGoogle Scholar
  2. 2.
    Markossian, K. A., and Kurganov, B. I. (2004) Biochemistry (Moscow), 69, 971–984.CrossRefGoogle Scholar
  3. 3.
    Hartl, F. U. (1996) Nature, 381, 571–579.PubMedCrossRefGoogle Scholar
  4. 4.
    Haslbeck, M. (2002) Cell Mol. Life Sci., 59, 1649–1657.PubMedCrossRefGoogle Scholar
  5. 5.
    Ganea, E. (2001) Curr. Prot. Pept. Sci., 2, 1–21.Google Scholar
  6. 6.
    Horwitz, J. (1992) Proc. Natl. Acad. Sci. USA, 89, 10449–10453.PubMedCrossRefGoogle Scholar
  7. 7.
    Abgar, S., Vanhoudt, J., Aerts, T., and Clauwaert, J. (2001) Biophys. J., 80, 1986–1995.PubMedGoogle Scholar
  8. 8.
    Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Yu., Levitsky, D. I., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2005) Biochemistry, 44, 15480–15487.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, K., and Spector, A. (1994) J. Biol. Chem., 269, 13601–13608.PubMedGoogle Scholar
  10. 10.
    Surewicz, W. K., and Olesen, P. R. (1995) Biochemistry, 34, 9655–9660.PubMedCrossRefGoogle Scholar
  11. 11.
    Augusteyn, R. C. (2004) Clin. Exp. Optom., 87, 356–366.PubMedCrossRefGoogle Scholar
  12. 12.
    Barford, D., and Johnson, L. H. (1989) Nature, 340, 609–616.PubMedCrossRefGoogle Scholar
  13. 13.
    Kornilaev, B. A., Kurganov, B. I., Eronina, T. B., Chebotareva, N. A., Livanova, N. B., Orlov, V. N., and Chernyak, V. Ya. (1997) Mol. Biol. (Moscow), 31, 98–107.Google Scholar
  14. 14.
    Kurganov, B. I., Kornilaev, B. A., Eronina, T. B., Livanova, N. B., Chebotareva, N. A., Orlov, V. N., and Chernyak, V. Ya. (1997) Proc. Int. Symp. Dedicated to 90th Anniversary of Academician N. M. Sisakyan (Gazenko, O. G., and Poglazov, B. F., eds.) Joint Institute of Nuclear Studies, Dubna, Vol. 1, pp. 173–189.Google Scholar
  15. 15.
    Kurganov, B. I., Kornilaev, B. A., Chebotareva, N. A., Malikov, V. P., Orlov, V. N., Lyubarev, A. E., and Livanova, N. B. (2000) Biochemistry, 39, 13144–13152.PubMedCrossRefGoogle Scholar
  16. 16.
    Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2001) Biochemistry (Moscow), 66, 449–455.CrossRefGoogle Scholar
  17. 17.
    Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2005) Biochemistry (Moscow), 70, 1020–1026.CrossRefGoogle Scholar
  18. 18.
    Markossian, K. A., Kurganov, B. I., Levitsky, D. I., Khanova, H. A., Chebotareva, N. A., Samoilov, A. M., Eronina, T. B., Fedurkina, N. V., Mitskevich, L. G., Merem’yanin, A. V., Kleymenov, S. Yu., Makeeva, V. F., Muronetz, V. I., Naletova, I. N., Shalova, I. N., Asryants, R. A., Schmalhausen, E. V., Saso, L., Panyukov, Yu. V., Dobrov, E. N., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2006) Protein Folding: New Research (Obalinsky, T. R., ed.) Nova Science Publishers Inc, New York, pp. 89–171.Google Scholar
  19. 19.
    Markossian, K. A., Khanova, H. A., Kleimenov, S. Yu., Levitsky, D. I., Chebotareva, N. A., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., and Kurganov, B. I. (2006) Biochemistry, 45, 13375–13384.PubMedCrossRefGoogle Scholar
  20. 20.
    Khanova, H. A., Markossian, K. A., Kleimenov, S. Yu., Levitsky, D. I., Chebotareva, N. A., Golub, N. V., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., Muranov, K. O., Ostrovsky, M. A., and Kurganov, B. I. (2007) Biophys. Chem., 125, 521–531.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiou, S. H., Azari, P., Himmel, M. E., and Squire, P. G. (1979) Int. J. Pept. Protein Res., 13, 409–417.PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher, E. H., and Krebs, E. G. (1962) Meth. Enzymol., 5, 368–373.Google Scholar
  23. 23.
    Kastenschmidt, L. L., Kastenschmidt, J., and Helmreich, E. (1968) Biochemistry, 7, 3590–3607.PubMedCrossRefGoogle Scholar
  24. 24.
    Putilina, T., Skouri-Panet, F., Prat, K., Lubsen, N. H., and Tardieu, A. (2003) J. Biol. Chem., 278, 13747–13756.PubMedCrossRefGoogle Scholar
  25. 25.
    Privalov, P. L., and Potekhin, S. A. (1986) Meth. Enzymol., 134, 4–51.CrossRefGoogle Scholar
  26. 26.
    Yudin, I. K., Nikolaenko, G. L., Kosov, V. L., Agayan, V. A., Anisimov, M. A., and Sengers, J. V. (1997) Int. J. Thermophys., 18, 1237–1248.CrossRefGoogle Scholar
  27. 27.
    Schuck, P. (2000) Biophys. J., 78, 1606–1619.PubMedGoogle Scholar
  28. 28.
    Brown, P. H., and Schuck, P. (2006) Biophys. J., 90, 4651–4661.PubMedCrossRefGoogle Scholar
  29. 29.
    Panyukov, Y. V., Yudin, I. K., Drachev, V. A., Dobrov, E. N., and Kurganov, B. I. (2007) Biophys. Chem., 127, 9–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Elimelech, M., Gregory, J., Jia, X., and Williams, R. A. (1995) Particle Deposition and Aggregation: Measurement, Modeling and Simulation; Butterworth-Heinemann Ltd., Boston.Google Scholar
  31. 31.
    Jullien, R., and Botet, R. (1987) Aggregation and Fractal Aggregates, World Scientific Publishing Co. Pte. Ltd., Singapore.Google Scholar
  32. 32.
    Weitz, D. A., Huang, J. S., Lin, M. Y., and Sung, J. (1985) Phys. Rev. Let., 54, 1416–1419.CrossRefGoogle Scholar
  33. 33.
    Weitz, D., and Lin, M. (1986) Phys. Rev. Lett., 57, 2037–2040.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin, M., Linsday, H., Weitz, D., Ball, R., Klein, R., and Meakin, P. (1989) Proc. R. Soc. Lond. A, 423, 71–87.Google Scholar
  35. 35.
    Berka, M., and Rice, J. A. (2005) Langmuir, 21, 1223–1229.PubMedCrossRefGoogle Scholar
  36. 36.
    Khanova, E. A. (2006) The Mechanism of Suppression of Protein Aggregation by α-Crystallin: Candidate’s dissertation [in Russian], Bach Institute of Biochemistry, Moscow.Google Scholar
  37. 37.
    Gunar, V. I., Sugrobova, N. P., Chebotareva, N. A., Stepanova, S. V., Poznanskaya, A. A., and Kurganov, B. I. (1991) in Enzymes Dependent on Pyridoxal Phosphate and Other Carbonyl Compounds as Cofactors (Fukui, T., Kagamiyama, H., Soda, K., and Wada, H., eds.) Pergamon Press, Oxford, pp. 417–419.Google Scholar
  38. 38.
    Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 409–422.CrossRefGoogle Scholar
  39. 39.
    Kurganov, B. I., Rafikova, E. R., and Dobrov, E. N. (2002) Biochemistry (Moscow), 67, 525–533.CrossRefGoogle Scholar
  40. 40.
    Kurganov, B. I. (2002) Tsinghua Sci. Technol., 7, 331–339.Google Scholar
  41. 41.
    Kurganov, B. I. (2002) Usp. Biol. Khim., 42, 89–138.Google Scholar
  42. 42.
    Wang, K., and Kurganov, B. I. (2003) Biophys. Chem., 106, 97–109.PubMedCrossRefGoogle Scholar
  43. 43.
    Kurganov, B. I. (2005) in Chemical and Biological Kinetics. New Horizons. Vol. 2. Biological Kinetics (Burlakova, E. B., and Varfolomeev, S. D., eds.) Koninklijke Brill NV, Leiden, The Netherlands, pp. 251–279.Google Scholar
  44. 44.
    Oosawa, F., and Kasai, M. (1962) J. Mol. Biol., 4, 10–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Rajaraman, K., Raman, B., Ramakrishna, T., and Rao, C. M. (2001) FEBS Lett., 497, 118–123.PubMedCrossRefGoogle Scholar
  46. 46.
    Seidler, N. W., and Seibel, I. (2000) Biochem. Biophys. Res. Commun., 277, 47–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Yeargans, G. S., and Seidler, N. W. (2003) Biochem. Biophys. Res. Commun., 300, 75–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Ali Khan, M. V., Rasheed, Z., Ali Khan, V., and Ali, R. (2007) Biochemistry (Moscow), 71, 146–152.CrossRefGoogle Scholar
  49. 49.
    Pivovarova, A. V., Mikhailova, V. V., Chernik, I. S., Chebotareva, N. A., Levitsky, D. I., and Gusev, N. B. (2005) Biochem. Biophys. Res. Commun., 331, 1548–1553.PubMedCrossRefGoogle Scholar
  50. 50.
    Fedurkina, N. V., Belousova, L. V., Mitskevich, L. N., Zhou, H.-M., Chang, Z., and Kurganov, B. I. (2006) Biochemistry (Moscow), 71, 325–331.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. V. Meremyanin
    • 1
  • T. B. Eronina
    • 1
  • N. A. Chebotareva
    • 1
  • S. Yu. Kleimenov
    • 1
  • I. K. Yudin
    • 2
  • K. O. Muranov
    • 3
  • M. A. Ostrovsky
    • 3
  • B. I. Kurganov
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Oil and Gas Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations