Advertisement

Biochemistry (Moscow)

, Volume 72, Issue 4, pp 439–444 | Cite as

Overexpression of complexin in PC12 cells inhibits exocytosis by preventing SNARE complex recycling

  • Jingguo Liu
  • Ting Guo
  • Ju Wu
  • Xiaochen Bai
  • Qiang Zhou
  • Sen-Fang Sui
Article

Abstract

Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, α-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of α-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and α-SNAP from SNARE complex.

Key words

complexin SNARE complex cycle readily releasable pool neurotransmitter release 

Abbreviations

LDCV

large dense core vesicle

NSF

N-ethylmaleimide-sensitive fusion protein

RRP

readily releasable pool

α-SNAP

α-soluble N-ethylmaleimide-sensitive factor attachment protein

SNAP-25

synaptosomal-associated protein of 25 kD

SNAREs

soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors

VAMP

vesicle associated membrane protein, or synaptobrevin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sudhof, T. C. (2004) Annu. Rev. Neurosci., 27, 509–547.PubMedCrossRefGoogle Scholar
  2. 2.
    McMahon, H. T., Missler, M., Li, C., and Sudhof, T. C. (1995) Cell, 83, 111–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Itakura, M., Misawa, H., Sekiguchi, M., Takahashi, S., and Takahashi, M. (1999) Biochem. Biophys. Res. Commun., 265, 691–696.PubMedCrossRefGoogle Scholar
  4. 4.
    Reim, K., Mansour, M., Varoqueaux, F., McMahon, H. T., Sudhof, T. C., Brose, N., and Rosenmund, C. (2001) Cell, 104, 71–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Archer, D. A., Graham, M. E., and Burgoyne, R. D. (2002) J. Biol. Chem., 277, 18249–18252.PubMedCrossRefGoogle Scholar
  6. 6.
    Ono, S., Baux, G., Sekiguchi, M., Fossier, P., Morel, N. F., Nihonmatsu, I., Hirata, K., Awaji, T., Takahashi, S., and Takahashi, M. (1998) Eur. J. Neurosci., 10, 2143–2152.PubMedCrossRefGoogle Scholar
  7. 7.
    Tokumaru, H., Umayahara, K., Pellegrini, L. L., Ishizuka, T., Saisu, H., Betz, H., Augustine, G. J., and Abe, T. (2001) Cell, 104, 421–432.PubMedCrossRefGoogle Scholar
  8. 8.
    Pabst, S., Hazzard, J. W., Antonin, W., Sudhof, T. C., Jahn, R., Rizo, J., and Fasshauer, D. (2000) J. Biol. Chem., 275, 19808–19818.PubMedCrossRefGoogle Scholar
  9. 9.
    Pabst, S., Margittai, M., Vainius, D., Langen, R., Jahn, R., and Fasshauer, D. (2002) J. Biol. Chem., 277, 7838–7848.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, X., Tomchick, D. R., Kovrigin, E., Arac, D., Machius, M., Sudhof, T. C., and Rizo, J. (2002) Neuron, 33, 397–409.PubMedCrossRefGoogle Scholar
  11. 11.
    Giraudo, C. G., Eng, W. S., Melia, T. J., and Rothman, J. E. (2006) Science, 313, 676–680.PubMedCrossRefGoogle Scholar
  12. 12.
    Schaub, J. R., Lu, X., Doneske, B., Shin, Y. K., and McNew, J. A. (2006) Nat. Struct. Mol. Biol., 13, 748–750.PubMedCrossRefGoogle Scholar
  13. 13.
    Tang, J., Maximov, A., Shin, O. H., Dai, H., Rizo, J., and Sudhof, T. C. (2006) Cell, 126, 1175–1187.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, Y. A., and Scheller, R. H. (2001) Nat. Rev. Mol. Cell. Biol., 2, 98–106.PubMedCrossRefGoogle Scholar
  15. 15.
    Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T. H., and Rothman, J. E. (1998) Cell, 92, 759–772.PubMedCrossRefGoogle Scholar
  16. 16.
    Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T. (1998) Nature, 395, 347–353.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C., and Niemann, H. (1994) EMBO J., 13, 5051–5061.PubMedGoogle Scholar
  18. 18.
    Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H., and Rothman, J. E. (1993) Cell, 75, 409–418.PubMedCrossRefGoogle Scholar
  19. 19.
    Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E. (1993) Nature, 362, 318–324.PubMedCrossRefGoogle Scholar
  20. 20.
    DeBello, W. M., O’Connor, V., Dresbach, T., Whiteheart, S. W., Wang, S. S., Schweizer, F. E., Betz, H., Rothman, J. E., and Augustine, G. J. (1995) Nature, 373, 626–630.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu, T., Ashery, U., Burgoyne, R. D., and Neher, E. (1999) EMBO J., 18, 3293–3304.PubMedCrossRefGoogle Scholar
  22. 22.
    Chamberlain, L. H., Roth, D., Morgan, A., and Burgoyne, R. D. (1995) J. Cell Biol., 130, 1063–1070.PubMedCrossRefGoogle Scholar
  23. 23.
    Morgan, A., and Burgoyne, R. D. (1995) EMBO J., 14, 232–239.PubMedGoogle Scholar
  24. 24.
    Schweizer, F. E., Dresbach, T., DeBello, W. M., O’Connor, V., Augustine, G. J., and Betz, H. (1998) Science, 279, 1203–1206.PubMedCrossRefGoogle Scholar
  25. 25.
    Littleton, J. T., Chapman, E. R., Kreber, R., Garment, M. B., Carlson, S. D., and Ganetzky, B. (1998) Neuron, 21, 401–413.PubMedCrossRefGoogle Scholar
  26. 26.
    Tolar, L. A., and Pallanck, L. (1998) J. Neurosci., 18, 10250–10256.PubMedGoogle Scholar
  27. 27.
    Liu, Z., Geng, L., Li, R., He, X., Zheng, J. Q., and Xie, Z. (2003) J. Neurosci., 23, 4156–4163.PubMedGoogle Scholar
  28. 28.
    Kubista, H., Edelbauer, H., and Boehm, S. (2004) J. Cell. Sci., 117(Pt. 6), 955–966.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosenmund, C., and Stevens, C. F. (1996) Neuron, 16, 1197–1207.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, Y. A., Scales, S. J., Duvvuri, V., Murthy, M., Patel, S. M., Schulman, H., and Scheller, R. H. (2001) J. Biol. Chem., 276, 26680–26687.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin, T. F., and Grishanin, R. N. (2003) Meth. Cell Biol., 71, 267–286.CrossRefGoogle Scholar
  32. 32.
    Gong, L. W., Di Paolo, G., Diaz, E., Cestra, G., Diaz, M. E., Lindau, M., De Camilli, P., and Toomre, D. (2005) Proc. Natl. Acad. Sci. USA, 102, 5204–5209.PubMedCrossRefGoogle Scholar
  33. 33.
    Holz, R. W., Bittner, M. A., Peppers, S. C., Senter, R. A., and Eberhard, D. A. (1989) J. Biol. Chem., 264, 5412–5419.PubMedGoogle Scholar
  34. 34.
    Hay, J. C., and Martin, T. F. (1992) J. Cell Biol., 119, 139–151.PubMedCrossRefGoogle Scholar
  35. 35.
    Heidelberger, R., Sterling, P., and Matthews, G. (2002) J. Neurophysiol., 88, 98–106.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Jingguo Liu
    • 1
  • Ting Guo
    • 1
  • Ju Wu
    • 1
  • Xiaochen Bai
    • 1
  • Qiang Zhou
    • 1
  • Sen-Fang Sui
    • 1
  1. 1.Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane BiotechnologyTsinghua UniversityBeijingChina

Personalised recommendations