Biochemistry (Moscow)

, Volume 72, Issue 3, pp 293–300 | Cite as

A novel method for packing quality assessment of transmembrane α-helical domains in proteins

  • A. O. Chugunov
  • V. N. Novoseletsky
  • A. S. Arseniev
  • R. G. Efremov


Here we present a novel method for assessment of packing quality for transmembrane (TM) domains of α-helical membrane proteins (MPs), based on analysis of available high-resolution experimental structures of MPs. The presented concept of protein-membrane environment classes permits quantitative description of packing characteristics in terms of membrane accessibility and polarity of the nearest protein groups. We demonstrate that the method allows identification of native-like conformations among the large set of theoretical MP models. The developed “membrane scoring function” will be of use for optimization of TM domain packing in theoretical models of MPs, first of all G-protein coupled receptors.

Key words

integral membrane proteins spatial structure prediction protein environment GPCR visual rhodopsin 



G-protein coupled receptors


membrane protein


photosynthetic protein


root-mean square deviation


“membrane score”




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klabunde, T., and Hessler, G. (2002) Chembiochem., 10, 928–944.CrossRefGoogle Scholar
  2. 2.
    Schoneberg, T., Schulza, A., Biebermann, H., Hermsdorf, T., Romplera, H., and Sangkuhl, K. (2004) Pharmacol. Ther., 104, 173–206.PubMedCrossRefGoogle Scholar
  3. 3.
    Torres, J., Stevens, T. J., and Samso, M. (2003) Trends Biochem. Sci., 28, 174.CrossRefGoogle Scholar
  4. 4.
    Fleishman, S. J., Unger, V. M., and Ben-Tal, N. (2006) Trends Biochem. Sci., 31, 106–113.PubMedCrossRefGoogle Scholar
  5. 5.
    Wallin, E., and von Heijne, G. (1998) Protein Sci., 7, 1029–1038.PubMedCrossRefGoogle Scholar
  6. 6.
    Vereshaga, Y. A., Volynsky, P. E., Nolde, D. E., Arseniev, A. S., and Efremov, R. G. (2005) J. Chem. Theory Comput., 1, 1252–1264.CrossRefGoogle Scholar
  7. 7.
    Schueler-Furman, O., Wang, C., Bradley, P., Misura, K., and Baker, D. (2005) Science, 310, 638–642.PubMedCrossRefGoogle Scholar
  8. 8.
    Yarov-Yarovoy, V., Schonbrun, J., and Baker, D. (2006) Proteins, 62, 1010–1025.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Devries, M. E., and Skolnick, J. (2006) PLoS Comput. Biol., 2, e13.Google Scholar
  10. 10.
    Becker, O. M., Shacham, S., Marantz, Y., and Noiman, S. (2003) Curr. Opin. Drug. Discov. Devel., 6, 353–361.PubMedGoogle Scholar
  11. 11.
    Hillisch, A., Pineda, L. F., and Hilgenfeld, R. (2004) Drug Discov. Today, 9, 659–669.PubMedCrossRefGoogle Scholar
  12. 12.
    Lesk, A. M., and Chothia, C. (1986) Philos. Trans. R. Soc. Lond. Biol. Sci., 317, 345–356.Google Scholar
  13. 13.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science, 289, 739–745.PubMedCrossRefGoogle Scholar
  14. 14.
    Sorgen, P. L., Hu, Y., Guan, L., Kaback, H. R., and Girvin, M. E. (2002) Proc. Natl. Acad. Sci. USA, 99, 14037–14040.PubMedCrossRefGoogle Scholar
  15. 15.
    Bowie, J. U. (2005) Nature, 438, 581–589.PubMedCrossRefGoogle Scholar
  16. 16.
    White, S. H., and von Heijne, G. (2005) Curr. Opin. Struct. Biol., 15, 378–386.PubMedCrossRefGoogle Scholar
  17. 17.
    Rees, D. C., DeAntonio, L., and Eisenberg, D. (1989) Science, 245, 510–513.PubMedCrossRefGoogle Scholar
  18. 18.
    Eisenberg, D., Weiss, R. M., and Terwilliger, T. C. (1982) Nature, 299, 371–374.PubMedCrossRefGoogle Scholar
  19. 19.
    Efremov, R. G., and Vergoten, G. (1996) J. Prot. Chem., 15, 63–76.CrossRefGoogle Scholar
  20. 20.
    Donnelly, D., Overington, J. P., Ruffle, S. V., Nugent, J. H., and Blundell, T. L. (1993) Protein Sci., 2, 55–70.PubMedGoogle Scholar
  21. 21.
    Stevens, T. J., and Arkin, I. T. (2001) Protein Sci., 10, 2507–2517.PubMedCrossRefGoogle Scholar
  22. 22.
    Beuming, T., and Weinstein, H. (2004) Bioinformatics, 20, 1822–1835.PubMedCrossRefGoogle Scholar
  23. 23.
    Pilpel, Y., Ben-Tal, N., and Lancet, D. (1999) J. Mol. Biol., 294, 921–935.PubMedCrossRefGoogle Scholar
  24. 24.
    Eilers, M., Shekar, S. C., Shieh, T., Smith, S. O., and Fleming, P. J. (2000) Proc. Natl. Acad. Sci. USA, 97, 5796–5801.PubMedCrossRefGoogle Scholar
  25. 25.
    Eilers, M., Patel, A. B., Liu, W., and Smith, S. O. (2002) Biophys. J., 5, 2720–2736.CrossRefGoogle Scholar
  26. 26.
    Fleishman, S. J., and Ben-Tal, N. (2002) J. Mol. Biol., 321, 363–378.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, Y., Elsner, M., Staritzbichler, R., and Helms, V. (2004) Proteins, 57, 577–585.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu, W., Eilers, M., Patel, A. B., and Smith, S. O. (2004) J. Mol. Biol., 337, 713–729.PubMedCrossRefGoogle Scholar
  29. 29.
    Ulmschneider, M. B., Sansom, M. S., and Di Nola, A. (2005) Proteins, 59, 252–265.PubMedCrossRefGoogle Scholar
  30. 30.
    Eyre, T. A., Partridge, L., and Thornton, J. M. (2004) Protein Eng. Des. Sel., 17, 613–624.PubMedCrossRefGoogle Scholar
  31. 31.
    Efremov, R. G., and Vergoten, G. (1996) Protein Eng., 9, 253–263.PubMedCrossRefGoogle Scholar
  32. 32.
    Bowie, J. U., Luthy, R., and Eisenberg, D. (1991) Science, 253, 164–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Delarue, M., and Koehl, P. (1995) J. Mol. Biol., 249, 675–690.PubMedCrossRefGoogle Scholar
  34. 34.
    Stevens, T. J., and Arkin, I. T. (1999) Proteins, 36, 135–143.PubMedCrossRefGoogle Scholar
  35. 35.
    Chothia, C. (1976) J. Mol. Biol., 105, 1–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.PubMedCrossRefGoogle Scholar
  37. 37.
    Efremov, R. G., Nolde, D. E., Vergoten, G., and Arseniev, A. S. (1999) Theor. Chem. Acc., 101, 170–174.Google Scholar
  38. 38.
    Efremov, R. G., Volynsky, P. E., Nolde, D. E., and Arseniev, A. S. (2001) Theor. Chem. Acc., 106, 48–54.Google Scholar
  39. 39.
    Kabsch, W., and Sander, C. (1983) Biopolymers, 22, 2577–2637.PubMedCrossRefGoogle Scholar
  40. 40.
    Horn, F., Weare, J., Beukers, M. W., Horsch, S., Bairoch, A., Chen, W., Edvardsen, O., Campagne, F., and Vriend, G. (1998) Nucleic Acids Res., 26, 277–281.CrossRefGoogle Scholar
  41. 41.
    Eisenberg, D., Wesson, M., and Yamashita, M. (1989) Chem. Scr., 29A, 217–221.Google Scholar
  42. 42.
    Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Mod., 7, 306–317.Google Scholar
  43. 43.
    Von Heijne, G. (1986) EMBO J., 5, 3021–3027.PubMedGoogle Scholar
  44. 44.
    Kopp, J., and Schwede, T. (2006) Nucleic Acids Res., 34, D315–D318.PubMedCrossRefGoogle Scholar
  45. 45.
    Pieper, U., Eswar, N., Davis, F. P., Braberg, H., Madhusudhan, M. S., Rossi, A., Marti-Renom, M., Karchin, R., Webb, B. M., Eramian, D., Shen, M. Y., Kelly, L., Melo, F., and Sali, A. (2006) Nucleic Acids Res., 34, D291–295.PubMedCrossRefGoogle Scholar
  46. 46.
    Luthy, R., Bowie, J. U., and Eisenberg, D. (1992) Nature, 356, 83–85.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. O. Chugunov
    • 1
    • 2
  • V. N. Novoseletsky
    • 1
    • 3
  • A. S. Arseniev
    • 1
  • R. G. Efremov
    • 1
  1. 1.Shemyakin—Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Bioengineering, Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyi, Moscow RegionRussia

Personalised recommendations