Advertisement

Biochemistry (Moscow)

, Volume 71, Supplement 1, pp S105–S112 | Cite as

A novel low molecular weight alanine aminotransferase from fasted rat liver

  • M. Vedavathi
  • K. S. Girish
  • M. Karuna KumarEmail author
Article

Abstract

Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free-SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM.

Key words

alanine aminotransferase fasting purification 

Abbreviations

AlaAT

alanine aminotransferase

PLP

pyridoxal phosphate

References

  1. 1.
    Karl, I. E., Barber, A. J., and Kipnis, D. M. (1976) J. Biol. Chem., 251, 884.Google Scholar
  2. 2.
    Katanuma, N., Mikumo, K., Matsuda, M., and Okada, M. (1962) J. Vitaminol., 8, 68–73.Google Scholar
  3. 3.
    Hopper, S., and Segal, H. L. (1964) Arch. Biochem. Biophys., 105, 501–505.CrossRefPubMedGoogle Scholar
  4. 4.
    Swick, R. W., Barnstein, P. L., and Stange, J. L. (1965) J. Biol. Chem., 240, 3334–3340.PubMedGoogle Scholar
  5. 5.
    Yamamoto, H., Aikawa, T., Matsutake, H., Okuda, T., and Ishikawa, E. (1974) Am. J. Physiol., 226, 1428–1433.PubMedGoogle Scholar
  6. 6.
    McDonald, M., Neufeld, N., Park, B. N., Berger, M., and Ruderman, N. (1976) Am. J. Physiol., 231, 619–626.Google Scholar
  7. 7.
    Remsey, C., Demigne, C., and Aufrere, J. (1978) Biochem. J., 170, 321–329.Google Scholar
  8. 8.
    Schimke, R. J. (1962) J. Biol. Chem., 237, 459–468.PubMedGoogle Scholar
  9. 9.
    Muramatsu, K., and Ashida, K. (1962) J. Nutr., 76, 143–150.PubMedGoogle Scholar
  10. 10.
    Zuchlowski, A. C., and Gaebler, O. H. (1957) Arch. Biochem. Biophys., 66, 463–488.Google Scholar
  11. 11.
    Rosen, F., Roberts, N. R., and Nichol, C. A. (1959) J. Biol. Chem., 234, 476–480.PubMedGoogle Scholar
  12. 12.
    Waldorf, M. A., Kirk, M. C., Linkswiter, H., and Harper, A. E. (1963) Proc. Soc. Exp. Biol. Med., 112, 764–768.PubMedGoogle Scholar
  13. 13.
    Beaton, G. H., Curry, D. M., and Veen, M. J. (1957) Arch. Biochem. Biophys., 70, 288–297.CrossRefPubMedGoogle Scholar
  14. 14.
    Swick, R. W., Barnstein, P. L., and Stange, J. L. (1965) J. Biol. Chem., 240, 3341–3345.PubMedGoogle Scholar
  15. 15.
    Davis, B. S. (1964) Ann. NY Acad. Sci., 121, 404–427.PubMedGoogle Scholar
  16. 16.
    Reitman, S., and Frankel, S. (1957) Am. J. Clin. Pathol., 28, 56–63.PubMedGoogle Scholar
  17. 17.
    Yagi, T., Kagamiyama, H., and Nozaki, M. (1981) Analyt. Biochem., 110, 146–149.PubMedGoogle Scholar
  18. 18.
    Laemmli, U. K. (1970) Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  19. 19.
    Andrews, P. (1964) Biochem. J., 91, 222–233.PubMedGoogle Scholar
  20. 20.
    Leach, B. S., Collawn, J. F., and Fish, W. W. (1980) Biochemistry, 19, 5734–5741.Google Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  22. 22.
    Ruscak, M., Orlicky, J., Zubor, V., and Hager, H. (1982) Neurochemistry, 39, 210–216.Google Scholar
  23. 23.
    Saier, M. H., and Jenkins, T. W. (1967) J. Biol. Chem., 242, 91–100.PubMedGoogle Scholar
  24. 24.
    Gatehouse, P. W., Hopper, P. S., Schatz, L., and Segal, H. L. (1967) J. Biol. Chem., 242, 2319–2324.PubMedGoogle Scholar
  25. 25.
    Schneider, M., and Chen, P. S. (1981) Insect. Biochem., 11, 657–672.Google Scholar
  26. 26.
    Gazeu-Reyjal, M., and Crouzet, J. (1976) Phytochemistry, 15, 1619–1622.CrossRefGoogle Scholar
  27. 27.
    Rech, J., and Crouzet, J. (1974) Biochim. Biophys. Acta, 350, 392–399.PubMedGoogle Scholar
  28. 28.
    Son, D., Jo, J., and Sugiyama, T. (1991) Arch. Biochem. Biophys., 289, 262–266.CrossRefPubMedGoogle Scholar
  29. 29.
    Ward, D. E., Kengen, S. W. M., van der Oost, J., and de Vos, W. M. (2000) J. Bacteriol., 182, 2559–2566.PubMedGoogle Scholar
  30. 30.
    Lain-Guelbenzu, B., Cardenar, J., and Munoz-Blanco, J. (1991) Eur. J. Biochem., 202, 881–887.CrossRefPubMedGoogle Scholar
  31. 31.
    Umemura, J., Yenagiya, K., Komatsubara, S., Sato, T., and Tosa, T. (1994) Biosci. Biotech. Biochem., 58, 283–287.Google Scholar
  32. 32.
    De Rosa, G., Burk, T. L., and Swick, R. W. (1979) Biochim. Biophys. Acta, 567, 116–124.PubMedGoogle Scholar
  33. 33.
    Ruscak, M., Orlicky, J., and Zubor, V. (1982) Comp. Biochem. Physiol., 71, 141–144.Google Scholar
  34. 34.
    Fujiwara, S., Sakuraba, H., and Noguchi, T. (1994) Arch. Biochem. Biophys., 310, 497–503.CrossRefPubMedGoogle Scholar
  35. 35.
    Lain-Guelbenzu, B., Munoz-Blanco, J., and Cardenas, J. (1990) Eur. J. Biochem., 188, 529–533.CrossRefPubMedGoogle Scholar
  36. 36.
    Bone, D. H., and Fowden, L. (1960) J. Exp. Bot., 11, 104–115.Google Scholar
  37. 37.
    Reed, R. E., and Hess, J. L. (1975) J. Biol. Chem., 250, 4456–4461.PubMedGoogle Scholar
  38. 38.
    Felig, P. (1975) Annu. Rev. Biochem., 44, 933–955.CrossRefPubMedGoogle Scholar
  39. 39.
    Watford, M. (1994) Biochim. Biophys. Acta, 1200, 73–78.PubMedGoogle Scholar
  40. 40.
    Givan, C. V. (1980) The Biochemistry of Plants. A Comprehensive Treatise, Academic Press, New York.Google Scholar
  41. 41.
    Splittstoesser, W. E., Chu, C., Stewart, S. A., and Splittstoesser, S. A. (1976) Plant Cell Physiol., 17, 83.Google Scholar
  42. 42.
    Ireland, R. J., and Joy, K. W. (1985) Transaminases, John Wiley and Sons, New York.Google Scholar
  43. 43.
    Bulos, B., and Handler, P. (1963) Abst. Amer. Chem. Soc. Meet., New York.Google Scholar
  44. 44.
    Velick, S. F., and Varva, J. (1962) J. Biol. Chem., 237, 2109–2122.PubMedGoogle Scholar
  45. 45.
    Hopper, S., and Segal, H. L. (1962) J. Biol. Chem., 237, 3189–3195.PubMedGoogle Scholar
  46. 46.
    Parich, D. L. (1979) Methods in Enzymology (Enzyme Kinetics and Mechanism), Academic Press, San Francisco.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.Department of Surgery, Thomas E. Starzl Transplantation InstituteUniversity of PittsburghPittsburghUSA

Personalised recommendations