Advertisement

Biochemistry (Moscow)

, Volume 71, Issue 11, pp 1256–1260 | Cite as

Use of the flux model of amino acid metabolism of Escherichia coli

  • A. V. Lyubetskaya
  • L. I. Rubanov
  • M. S. Gelfand
Article

Abstract

A program implementing a flux model of Escherichia coli metabolism was used to analyze the effects of the addition of amino acids (tryptophan, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, lysine, threonine, cysteine, methionine, arginine, proline) to minimal medium or media lacking nitrogen, carbon, or both. The overall response of the metabolic system to the addition of various amino acids to the minimal medium is similar. Glycolysis and the synthesis of pyruvate with its subsequent degradation to acetate via acetyl-CoA become more efficient, whereas the fluxes through the pentose phosphate pathway and the TCA cycle decrease. If amino acids are used as the sole source of carbon, nitrogen, or both, the changes in the flux distribution are determined mainly by the carbon limitation. The phosphoenolpyruvate to glucose-6-phosphate flux increases; the flux through the pentose phosphate path is directed towards ribulose-5-phosphate. Other changes are determined by the compounds that are the primary products of catabolism of the added amino acid.

Key words

flux balance analysis Escherichia coli metabolism of amino acids metabolism modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, J. S., and Palsson, B. O. (2000) Proc. Natl. Acad. Sci. USA, 97, 5528–5533.PubMedCrossRefGoogle Scholar
  2. 2.
    Edwards, J. S., and Palsson, B. O. (2000) BMC Bioinformatics, 1, 1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001) Nat. Biotechnol., 19, 125–130.PubMedCrossRefGoogle Scholar
  4. 4.
    Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002) Nature, 420, 186–189.PubMedCrossRefGoogle Scholar
  5. 5.
    Gelfand, M. S. (2005) Informats. Protsessy, 5, 33–39.Google Scholar
  6. 6.
    Papin, J. A., Price, N. D., and Palsson, B. O. (2004) in Metabolic Engineering in the Post Genomic Era (Kholodenko, B. N., Westerhoff, H. V., and Hethersett, eds.) Horizon Bioscience, pp. 209–234.Google Scholar
  7. 7.
    Moreira dos Santos, M., Akesson, M., and Nielsen, J. (2004) in Metabolic Engineering in the Post Genomic Era (Kholodenko, B. N., Westerhoff, H. V., and Hethersett, eds.) Horizon Bioscience, pp. 89–105.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Lyubetskaya
    • 1
  • L. I. Rubanov
    • 2
  • M. S. Gelfand
    • 1
    • 2
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations