Biochemistry (Moscow)

, Volume 71, Issue 5, pp 505–512 | Cite as

Intermediate amyloid oligomers of lysozyme: Is their cytotoxicity a particular case or general rule for amyloid?

  • M. Malisauskas
  • A. Darinskas
  • V. V. Zamotin
  • A. Gharibyan
  • I. A. Kostanyan
  • L. A. Morozova-RocheEmail author


In the current study we investigated the molecular mechanisms of cytotoxicity of amyloid oligomers of horse milk lysozyme. We have shown that lysozyme forms soluble amyloid oligomers and protofibrils during incubation at pH 2.0 and 4.5 and 57°C. These structures bind the amyloid-specific dyes thioflavin T and Congo Red, and their morphology and size were analyzed by atomic force microscopy. Monomeric lysozyme and its fibrils did not affect the viability of three cell types used in our experiments including primary murine neurons and fibroblasts, as well as neuroblastoma cell line IMR-32. However, soluble amyloid oligomers of lysozyme caused death of all these cell types, as estimated by flow-cytometry counting dead cells stained with ethidium bromide. The primary cell cultures appeared to be more sensitive to amyloid than neuroblastoma cell line IMR-32. Amyloid cytotoxicity depends on the size of oligomeric particles: samples containing 20-mers formed at pH 4.5 were more toxic than tetramers and octamers present in the solution at pH 2.0. Soluble amyloid oligomers can self-assemble into doughnut-like structures; however, no correlation was observed between the amount of the doughnut-like structures in the sample and its cytotoxicity. The fact that the intermediate oligomers of such an abundant protein as lysozyme display cytotoxicity confirms a hypothesis that cytotoxicity is a common feature of protein amyloid. Inhibition of intermediate oligomer formation is crucial in preventing amyloid pathogeneses.

Key words

amyloid atomic force microscopy cytotoxicity apoptosis oligomer 



atomic force microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koudinova, N. V., Berezov, T. T., and Koudinov, A. R. (1999) Biochemistry (Moscow), 64, 752–757.PubMedGoogle Scholar
  2. 2.
    Kasumova, S. Iu. (2002) Zh. Vopr. Neirokhir. im. N. N. Burdenko, 4, 45–48.Google Scholar
  3. 3.
    Rogaev, E. I. (1999) Vestn. Ross. Akad. Med. Nauk, No. 1, 33–39.Google Scholar
  4. 4.
    Serov, V. V. (1998), Arkh. Patol., 60, 23–27.PubMedGoogle Scholar
  5. 5.
    Dobson, C. M. (2003) Nature, 426, 884–890.PubMedCrossRefGoogle Scholar
  6. 6.
    Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C., Terry, C. J., Feest, G., Zalin, A. M., and Hsuan, J. J. (1993) Nature, 362, 553–557.PubMedCrossRefGoogle Scholar
  7. 7.
    Harrison, R. F., Hawkins, P. N., Roche, W. R., MacMahon, R. F., Hubscher, S. G., and Buckels, J. A. (1996) Gut, 38, 151–152.PubMedGoogle Scholar
  8. 8.
    Lee, K. W., Lee, S. H., Kim, H., Song, J. S., Yang, S. D., Paik, S. G., and Han, P. L. (2004) J. Neurosci. Res., 76, 572–580.PubMedCrossRefGoogle Scholar
  9. 9.
    Gong, Y., Chang, L., Viola, K. L., Lacor, N. P., Lambert, M. P., Finch, C. E., Krafft, G. A., and Klein, W. L. (2003) Proc. Natl. Acad. Sci. USA, 100, 10417–10422.PubMedCrossRefGoogle Scholar
  10. 10.
    Andersson, K., Olofsson, A., Nielsen, E. H., Svehag, S. E., and Lundgren, E. (2002) Biochem. Biophys. Res. Commun., 294, 309–314.PubMedCrossRefGoogle Scholar
  11. 11.
    Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002) Nature, 416, 507–511.PubMedCrossRefGoogle Scholar
  12. 12.
    Svensson, M., Hakansson, A., Mossberg, A. K., Linse, S., and Svanborg, C. (2000) Proc. Natl. Acad. Sci. USA, 97, 4221–4226.PubMedCrossRefGoogle Scholar
  13. 13.
    Sunde, M., Serpell, L. C., and Bartlam, M. (1997) J. Mol. Biol., 273, 729–739.PubMedCrossRefGoogle Scholar
  14. 14.
    Sotirov, L. (2004) Revue Med. Vet., 155, 221–225.Google Scholar
  15. 15.
    Morozova, L. A., Haynie, D. T., Arico-Muendel, C., van Dael, H., and Dobson, C. M. (1995) Nat. Struct. Biol., 10, 171–175.Google Scholar
  16. 16.
    Morozova-Roche, L. A., Arico-Muendel, C., Haynie, D. T., Emelyanenko, V. I., van Dael, H., and Dobson, C. M. (1997) J. Mol. Biol., 268, 903–921.PubMedCrossRefGoogle Scholar
  17. 17.
    Morozova-Roche, L. A., Jones, J. A., Noppe, W., and Dobson, C. M. (1999) J. Mol. Biol., 289, 1055–1073.PubMedCrossRefGoogle Scholar
  18. 18.
    Morozova-Roche, L. A. (2002) Doctoral dissertation (in Physics and Math) [in Russian], ITEB RAN, Pushchino.Google Scholar
  19. 19.
    Morozova-Roche, L. A., Zurdo, J., Spencer, A., Noppe, W., Receveur, V., Archer, D. B., Joniau, M., and Dobson, C. M. (2000) J. Struct. Biol., 130, 339–351.PubMedCrossRefGoogle Scholar
  20. 20.
    Krebs, M., Morozova-Roche, L. A., Daniel, K. A., Robinson, C. V., and Dobson, C. M. (2004) Protein Sci., 13, 1933–1938.PubMedCrossRefGoogle Scholar
  21. 21.
    Goers, J., Permyakov, S. E., Permyakov, E. A., Uversky, V. N., and Fink, A. L. (2002) Biochemistry, 41, 12546–12551.PubMedCrossRefGoogle Scholar
  22. 22.
    Malisauskas, M., Zamotin, V., Jass, J., Noppe, W., Dobson, C. M., and Morozova-Roche, L. A. (2003) J. Mol. Biol., 330, 879–890.PubMedCrossRefGoogle Scholar
  23. 23.
    Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., and Lansbury, P. T., Jr. (2002) Nature, 418, 291.PubMedCrossRefGoogle Scholar
  24. 24.
    Noppe, W., Hanssens, I., and De Cuyper, M. (1996) J. Chromatogr. A, 719, 327–331.PubMedCrossRefGoogle Scholar
  25. 25.
    Levine, H. (1995) Amyloid, 2, 1–6.Google Scholar
  26. 26.
    Schneider, S. W., Larmer, J., Henderson, R. M., and Oberleithner, H. (1998) Pflugers Arch., 435, 362–367.PubMedCrossRefGoogle Scholar
  27. 27.
    Geisse, N. A., Wasle, B., Saslowsky, D. E., Henderson, R. M., and Edwardson, J. M. (2002) J. Membr. Biol., 189, 83–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Dorman, D. C., Bolon, B., and Morgan, K. T. (1993) Toxicol. Appl. Pharmacol., 122, 265–272.PubMedCrossRefGoogle Scholar
  29. 29.
    Piras, G., El Kharroubi, A., Kozlov, S., Escalante-Alcalde, D., Hernandez, L., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Stewart, C. (2000) Mol. Cell. Biol., 20, 3308–3315.PubMedCrossRefGoogle Scholar
  30. 30.
    Alberts, B., Lewis, J., Raff, R., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell, 3rd Edn., Garland Publishing, USA.Google Scholar
  31. 31.
    Kim, H. J., Chae, S. C., Lee, D. K., Chromy, B., Lee, S. C., Park, Y. C., Klein, W. L., Krafft, G. A., and Hong, S. T. (2003) FASEB J., 17, 118–120.PubMedGoogle Scholar
  32. 32.
    Lavrikova, M. A., Zamotin, V., Malisauskas, M., Chertkova, R., Kostanyan, I. A., Dolgikh, D. A., Kirpichnikov, M. P., and Morozova-Roche, L. A. (2006) Biochemistry (Moscow), 71, 306–314.CrossRefGoogle Scholar
  33. 33.
    Gruden, M. A., Davudova, T. B., Malisauskas, M., Zamotin, V. V., Sewell, R. D. E., Voskresenskaya, N. I., Kostanyan, I. A., Sherstneva, V. V., and Morozova-Roche, L. A. (2004) Dement. Geriatr. Cogn. Disord., 18, 165–171.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. Malisauskas
    • 1
  • A. Darinskas
    • 2
  • V. V. Zamotin
    • 1
  • A. Gharibyan
    • 1
  • I. A. Kostanyan
    • 3
  • L. A. Morozova-Roche
    • 1
    • 4
    Email author
  1. 1.Department of Medical Biochemistry and BiophysicsUmea UniversityUmeaSweden
  2. 2.Laboratory of Pharmacology, Institute of ImmunologyVilnius UniversityVilniusLithuania
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Biological InstrumentationRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations