Advertisement

Biochemistry (Moscow)

, Volume 71, Issue 2, pp 155–159 | Cite as

A false note of DNA polymerase iota in the choir of genome caretakers in mammals

  • L. V. Gening
  • A. V. Makarova
  • A. M. Malashenko
  • V. Z. TarantulEmail author
Article

Abstract

DNA polymerase iota (Polι) of mammals is a member of the Y family of DNA polymerases. Among many other genome caretakers, these enzymes are responsible for maintaining genome stability. The members of the Y-family DNA polymerases take part in translesion DNA synthesis, bypassing some DNA lesions, and are characterized by low fidelity of DNA synthesis. A unique ability of Polι to predominantly incorporate G opposite T allowed us to identify the product of this enzyme among those synthesized by other DNA polymerases. This product can be called a “false note” of Polι. We measured the enzyme activity of Polι in crude extracts of cells from different organs of five inbred strains of mice (C3H/Sn, 101/H, C57BL/6, BALB/c, 129/J) that differed in a number of parameters. The “false note” of Polι was clearly sounding only in the extracts of testis and brain cells from four analyzed strains: C3H/Sn, 101/H, C57BL/6, BALB/c. In mice of 129/J strain that had a nonsense mutation in the second exon of the polι gene, the Polι activity was reliably detectable only in the extracts of brain. The data show that the active enzyme can be formed in some cell types even if they carry a nonsense mutation in the polι gene. This supports tissue-specific regulation of polι gene expression through alternative splicing. A semiquantitative determination of Polι activity in mice strains different in their radiosensitivity suggests a reciprocal correlation between the enzyme activity of Polι in testis and the resistance of mice to radiation.

Key words

DNA polymerase iota genome caretakers mouse strains brain testis sensitivity to radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodman, M. F. (2002) Annu. Rev. Biochem., 71, 17–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Prakash, S., Johnson, R. E., and Prakash, L. (2005) Annu. Rev. Biochem., 74, 317–353.PubMedCrossRefGoogle Scholar
  3. 3.
    Rattray, A. J., and Strathern, J. N. (2003) Annu. Rev. Genet., 37, 31–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang, I. Y., Miller, H., Wang, Z., Frank, E. G., Ohmori, H., Hanaoka, F., and Moria, M. (2003) J. Biol. Chem., 278, 989–994.Google Scholar
  5. 5.
    Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L. (2000) Nature, 406, 1015–1019.PubMedCrossRefGoogle Scholar
  6. 6.
    Haracska, L., Johnson, R. E., Unk, I., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2001) Proc. Natl. Acad. Sci. USA, 98, 14256–14261.PubMedCrossRefGoogle Scholar
  7. 7.
    Washington, M. T., Minko, I. G., Johnson, R. E., Wolfle, W. T., Harris, T. M., Lloyd, R. S., Prakash, S., and Prakash, L. (2004) Mol. Cell. Biol., 24, 5687–5693.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Yuan, F., Wu, X., and Wang, Z. (2000) Mol. Cell. Biol., 20, 7099–7108.PubMedCrossRefGoogle Scholar
  9. 9.
    Faili, A., Aoufouchi, S., Flatter, E., Gueranger, Q., Reynaud, C. A., and Weill, J. C. (2002) Nature, 419, 944–947.PubMedCrossRefGoogle Scholar
  10. 10.
    McDonald, J. P., Frank, E. G., Plosky, B. S., Rogozin, I. B., Masutani, C., Hanaoka, F., Woodgate, R., and Gearhart, P. J. (2003) J. Exp. Med., 198, 635–643.PubMedCrossRefGoogle Scholar
  11. 11.
    Shimizu, T., Azuma, T., Ishiguro, M., Kanjo, N., Yamada, S., and Ohmori, H. (2005) Immunol. Lett., 98, 259–264.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, M., Devereux, T. R., Vikis, H. G., McCulloch, S. D., Holliday, W., Anna, C., Wang, Y., Bebemek, K., Kunkel, T. A., Guan, K., and You, M. (2004) Cancer Res., 64, 1924–1931.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, G. H., and Matsushita, H. (2005) Cancer Sci., 96, 256–259.PubMedCrossRefGoogle Scholar
  14. 14.
    Gening, L. V., Petrochenkov, A. N., Reshetnyak, A. B., Andreeva, L. E., and Tarantul, V. Z. (2004) Biochemistry (Moscow), 69, 435–440.CrossRefGoogle Scholar
  15. 15.
    Gening, L. V., Kamensky, A. A., Levitskaya, N. G., Petrochenkov, A. N., Poletaeva, I. I., and Tarantul, V. Z. (2005) Biochemistry (Moscow), 70, 1157–1162.CrossRefGoogle Scholar
  16. 16.
    Frank, E. G., Tissier, A., McDonald, J. P., Rapic-Otrin, V., Zeng, X., Gearhart, P. J., and Woodgate, R. (2001) EMBO J., 20, 2914–2922.PubMedCrossRefGoogle Scholar
  17. 17.
    Seong, E., Saunders, T. L., Stewart, C. L., and Burmeister, M. (2004) Trends Genet., 20, 59–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang, J., Chen, Z., Liu, Y., Hickey, R. J., and Malkas, L. (2004) Cancer Res., 64, 5597–5607.PubMedCrossRefGoogle Scholar
  19. 19.
    Malashenko, A. M., Beskova, T. B., Pomerantseva, N. D., and Ramaiia, L. K. (2003) Genetika, 39, 1247–1251.PubMedGoogle Scholar
  20. 20.
    Roderick, T. H. (1963) Radiation Res., 20, 631–639.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • L. V. Gening
    • 1
  • A. V. Makarova
    • 1
  • A. M. Malashenko
    • 2
  • V. Z. Tarantul
    • 1
    Email author
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Research Laboratory for Experimental Biological ModelsRussian Academy of Medical SciencesSvetlye Gory, Moscow RegionRussia

Personalised recommendations