Automation and Remote Control

, Volume 80, Issue 1, pp 1–15 | Cite as

Suboptimal Anisotropic Filtering for Linear Discrete Nonstationary Systems with Uncentered External Disturbance

  • V. N. TiminEmail author
  • A. Yu. Kustov
  • A. P. Kurdyukov
  • D. A. Goldin
  • Yu. A. Vershinin
Linear Systems


We consider the robust anisotropic filtering problem for a linear discrete nonstationary system on a finite time interval. We assume that external disturbances acting on the object have anisotropy bounded from above and additionally satisfy two constraints on the moments. Our solution of the filtering problem is based on the boundedness criterion for the anisotropic norm in reverse time and reduces to finding a solution for a convex optimization problem. We illustrate the operation of a suboptimal anisotropic estimator with a numerical example.


anisotropic filtering nonstationary systems non-centered random disturbances convex optimization linear matrix inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, B.D.O. and Moore, J.B., Optimal Filtering, New Jersey: Prentice Hall, 1979.zbMATHGoogle Scholar
  2. 2.
    Hassibi, B., Sayed, A., and Kailath, T., Indefinite Quadratic Estimation and Control: A Unified Approach to H2 and H∞ Theories, Philadelphia: SIAM, 1999.CrossRefzbMATHGoogle Scholar
  3. 3.
    Simon, D., Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, New Jersey: Wiley, 2006.CrossRefGoogle Scholar
  4. 4.
    Zhou, K., Glover, K., Bodenheimer, B., and Doyle, J., Mixed H2 and H∞ Performance Objectives I: Robust Performance Analysis, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 1564–1574.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Haddad, W.M., Bernstein, D.S., and Mustafa, D., Mixed-Norm H2/H∞ Regulation and Estimation: The Discrete-Time Case, Syst. Control Lett., 1991, vol. 16, no. 4, pp. 235–247.CrossRefzbMATHGoogle Scholar
  6. 6.
    Khargonekar, P.P., Rotea, M.A., and Baeyens, E., Mixed H2/H∞ Filtering, Int. J. Robust Nonlin. Control, 1996, vol. 6, pp. 313–330.CrossRefzbMATHGoogle Scholar
  7. 7.
    Bernstein, D.S. and Haddad, W.M., Steady-State Kalman Filtering with an H∞ Error Bound, Syst. Control Lett., 1989, vol. 12, pp. 9–16.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Limebeer, D.J.N., Anderson, B.D.O., and Hendel, B., Mixed H2/H∞ Filtering by the Theory of Nash Games, Proc. Workshop Robust Control, Tokyo, Japan, 1992, pp. 9–15.Google Scholar
  9. 9.
    Huaizhong Li and Minyue Fu, A Linear Matrix Inequality Approach to Robust H∞ Filtering, IEEE Trans. Signal Proc., 1997, vol. 45, no. 9, pp. 2338–2350.CrossRefGoogle Scholar
  10. 10.
    Wang, Z. and Unbehauen, H., Robust H2/H∞ State Estimation for Systems with Error Variance Constraints: The Continuous-Time Case, IEEE Trans. Automat. Control, 1999, vol. 44, pp. 1061–1065.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Palhares, R.M. and Peres, P.L.D., LMI Approach to the Mixed H2/H∞ Filtering Design for Discrete-Time Uncertain Systems, IEEE Trans. Aerospace Electron. Syst., 2001, vol. 37, no. 1, pp. 292–296.CrossRefGoogle Scholar
  12. 12.
    Semyonov, A.V., Vladimirov, I.G., and Kurdjukov, A.P., Stochastic Approach to H∞-optimization, Proc. 33 IEEE Conf. Decision Control, Florida, USA, 1994, pp. 2249–2250.Google Scholar
  13. 13.
    Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., A Stochastic H∞-Optimization Problem, Dokl. Mat., 1995, vol. 343, no. 5, pp. 607–609.Google Scholar
  14. 14.
    Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., Anisotropy of Signals and Entropy of Linear Stationary Systems, Dokl. Mat., 1995, vol. 342, no. 5, pp. 583–585.zbMATHGoogle Scholar
  15. 15.
    Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., On Computing the Anisotropic Norm of Linear Discrete-Time-Invariant Systems, Proc. 13 IFAC World Congr., San-Francisco, June 30–July 5, 1996.Google Scholar
  16. 16.
    Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., State-Space Solution to Anisotropy-Based Stochastic H∞-Optimization Problem, Proc. 13 IFAC World Congr., San-Francisco, 1996, pp. 427–432.Google Scholar
  17. 17.
    Vladimirov, I.G., Anisotropy-Based Optimal Filtering in Linear Discrete Time Invariant Systems, CADSMAP Res. Report 01-03, 2001, arXiv: 1412.3010 [completed in 2001].Google Scholar
  18. 18.
    Vladimirov, I.G., Diamond, P., and Kloeden, P., Anisotropy-Based Robust Performance Analysis of Finite Horizon Linear Discrete Time Varying Systems, Autom. Remote Control, 2006, vol. 67, no. 8, pp. 1265–1282.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kustov, A.Yu. and Timin, V.N., Anisotropy-Based Analysis for Finite Horizon Time-Varying Systems with Non-Centered Disturbances, Autom. Remote Control, 2017, vol. 78, no. 6, pp. 974–988.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vladimirov, I. and Diamond, P., Robust Filtering in Finite Horizon Linear Discrete Time Varying Systems by Minimum Anisotropic Norm Criterion, CADSMAP Res. Report 01–05, 2001 [completed in 2001].Google Scholar
  21. 21.
    Maximov, E.A., Kurdyukov, A.P., and Vladimirov, I.G., Anisotropic Norm Bounded Real Lemma for Linear Time-Varying System, Preprint 18th IFAC World Congr., Milano, 2011, pp. 4701–4706.Google Scholar
  22. 22.
    Yaesh, I. and Stoica, A.-M., Linear Time-Varying Anisotropic Filtering Its Application to Nonlinear Systems State Estimation, Proc. Eur. Control Conf., Strasburg, 2014, June 24–27, pp. 975–980.Google Scholar
  23. 23.
    Timin, V.N. and Kurdyukov, A.P., Suboptimal Anisotropic Filtering in a Finite Horizon, Autom. Remote Control, 2016, vol. 77, no. 1, pp. 1–20.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kustov, A.Yu. and Timin, V.N., Suboptimal Anisotropy-based Control for Linear Discrete Time Varying Systems with Noncentered Disturbances, Proc. 13th IFAC World Congr., Toulouse, France, July 9–14, 2017, pp. 6296–6301.Google Scholar
  25. 25.
    Lofberg, J., YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Proc. CACSD Conf., Taipei, Taiwan, 2004. Scholar
  26. 26.
    Sturm, J.F., Using SeDuMi 1.02, A MATLAB Toolbox for Optimization Over Symmetric Cones, Optim. Methods Software, 1999, vol. 11, pp. 625–653.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. N. Timin
    • 1
    Email author
  • A. Yu. Kustov
    • 1
  • A. P. Kurdyukov
    • 1
    • 2
  • D. A. Goldin
    • 1
  • Yu. A. Vershinin
    • 3
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Coventry UniversityCoventryUK

Personalised recommendations