Advertisement

Automation and Remote Control

, Volume 79, Issue 10, pp 1886–1902 | Cite as

Passification-based Adaptive Control Design for Quadrotor Stabilization

  • A. O. Belyavskii
  • S. I. Tomashevich
Large Scale Systems Control
  • 17 Downloads

Abstract

This paper is dedicated to passification-based adaptive control design for quadrotor stabilization. We construct a stabilization system for a quadrotor using PD controllers and the feedback linearization method. Finally, we demonstrate simulation results and compare the new approach with two other control design methods.

Keywords

UAV quadrotor passification adaptive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrievskii, B.R. and Fradkov, A.L., Method of Passification in Problems of Adaptive Control, Estimation, and Synchronization, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1699–1731.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belokon’, S.A., Zolotukhin, Yu.A., Mal’tsev, A.S., et al., Control of Flight Parameters of a Quadrotor Vehicle Moving along a Given Trajectory, Avtometriya, 2013, no. 5, pp. 32–42.Google Scholar
  3. 3.
    Besekerskii, V.A and Popov, E.P., Teoriya sistem avtomaticheskogo upravleniya (Theory of Automatic Control Systems), Moscow: Nauka, 1975.Google Scholar
  4. 4.
    Gur’yanov, A.E., Modeling of Quadcopter Control, Inzh. Vest., 2014, no. 8, pp. 522–534.Google Scholar
  5. 5.
    GOST (State Standard) 20058-80: Aircraft Dynamics in Atmosphere. Terms, Definitions and Symbols, Moscow: Izd. Standartov, 1981.Google Scholar
  6. 6.
    Emelyanov, S.V., Korovin, S.K., and Levantovskii, L.V., New Class of Second-Order Sliding Algorithms, Mat. Modelir., 1990, vol. 2, no. 3, pp. 89–100.MathSciNetGoogle Scholar
  7. 7.
    Zhuchkov, R.N., Application of Predictive Control Approach in Stabilizing Control Design of Networked Plants, Autom. Remote Control, 2015, vol. 76, no. 9, pp. 1704–1712.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Meerov, M.V., Structural Synthesis of High-Accuracy Automatic Control Systems, New York: Pergamon, 1965.Google Scholar
  9. 9.
    Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  10. 10.
    Fradkov, A.L., Design of Adaptive Stabilization System for Linear Dynamic Plants, Autom. Remote Control, 1974, vol. 35, no. 12, part 2, pp. 1960–1966.zbMATHGoogle Scholar
  11. 11.
    Utkin, V.I., Skol’zyashchie rezhimy i ikh primeneniya v sistemakh s peremennoi strukturoi (Sliding Modes and Their Applications in Variable Structure Systems), Moscow: Nauka, 1974.Google Scholar
  12. 12.
    Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 1996.Google Scholar
  13. 13.
    Amelin, K., Tomashevich, S., and Andrievsky, B., Recursive Identification of Motion Model Parameters for Ultralight UAV, IFAC Proceedings Volumes (IFAC-PapersOnline), 2015, vol. 48, no. 11, pp. 233–237.CrossRefGoogle Scholar
  14. 14.
    Angeletti, G., Pereira Valente, J.R., Iocchi, L., and Nardi, D., Autonomous Indoor Hovering with a Quadrotor, Proc. Workshop on Mini and Micro UAV for Security and Surveillance, 2008, pp. 472–481.Google Scholar
  15. 15.
    Balas, C., Modelling and Linear Control of a Quadrotor, MSc Thesis, Cranfield, 2007.Google Scholar
  16. 16.
    Bills, C., Chen, J., and Saxena, A., Autonomous MAV Flight in Indoor Environments Using Single Image Perspective Cues, IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.Google Scholar
  17. 17.
    Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., and Smailzadeh, S.M., Attitude Control of a Quadrotor with Optimized PID Controller, Intel. Control Automation, 2013, vol. 4, no. 3, pp. 335–342.CrossRefGoogle Scholar
  18. 18.
    Bonna, R. and Camino, J.F., Trajectory Tracking Control of a Quadrotor Using Feedback Linearization, Proc. XVII Int. Symp. on Dynamic Problems of Mechanics DINAME-2015, 2015.Google Scholar
  19. 19.
    Bouabdallah, S., Design and Control of Quadrotors with Application to Autonomous Flying, MSc Thesis, Swiss Federal Institute of Technology, 2007.Google Scholar
  20. 20.
    Bouabdallah, S., Murrieri, P., and Siegwart, R., Design and Control of an Indoor Micro Quadrotor, Proc. IEEE Int. Conf. on Robotics and Automation, 2004, vol.5.Google Scholar
  21. 21.
    Bouabdallah, S. and Siegwart, R., Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor, IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005, pp. 2259–2264.Google Scholar
  22. 22.
    Bouabdallah, S. and Siegwart, R., Full Control of a Quadrotor, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007, pp. 153–158.Google Scholar
  23. 23.
    Cutler, M.J., Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter, MSc Thesis, Massachusetts Institute of Technology, Massachusetts, 2012.Google Scholar
  24. 24.
    Czerwinski, E., Szewc, M., Wojtunik, I., Awrejcewicz, J., and Olejnik, P., Mathematical Model, Computer Aided Design and Programming of a Multifunctional Flying Object, Aviation, 2014, vol. 18, no. 1, pp. 28–39.CrossRefGoogle Scholar
  25. 25.
    Emran, B.J. and Yesildirek, A., Robust Nonlinear Composite Adaptive Control of Quadrotor, Int. J. Digital Inf. Wireless Commun., 2014, pp. 213–225.Google Scholar
  26. 26.
    Fang, Z., Gao,W., and Zhang, L., Robust Adaptive Integral Backstepping Control of a 3-DOF Helicopter, Int. J. Adv. Robotic Syst., 2012, vol. 9, pp. 1–8.CrossRefGoogle Scholar
  27. 27.
    Gvoth, J., Blaho, M., and Mudrakova, T., Parameters Optimization for Unmanned Aerial Vehicle Control, Proc. 22nd Annual Conf. in Technical Computing, 2014, p.27.Google Scholar
  28. 28.
    Hoffmann, G.M., Huang, H., Waslander, S.L., and Tomlin, C.J., Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment, Proc. AIAA Guidance, Navigation, and Control Conf., 2007.Google Scholar
  29. 29.
    Junior, J.C.V., De Paula, J.C., Leandro, G.V. and Bonfim, M.C., Stability Control of a Quad-Rotor Using a PID Controller, Brazilian J. Instr. Control, 2012, pp. 15–20.Google Scholar
  30. 30.
    Lee, D., Kim, H.J., and Sastry, S., Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter, Int. J. Control Autom. Syst., 2009, vol. 7, no. 3, pp. 419–428.CrossRefGoogle Scholar
  31. 31.
    Lee, T., Leok, M., McClamroch, N.H., Geometric Tracking Control of a Quadrotor UAV on SE(3), Proc. 49th IEEE Conf. on Decision and Control, 2010, pp. 5420–5425.Google Scholar
  32. 32.
    Lupashin, S., Hehn, M., Mueller, M.W., Schoellig, A.P., Sherback, M., and D‘Andrea, R., A Platform for Aerial Robotics Research and Demonstration: The Flying Machine Arena, Mechatronics, 2014, vol. 24, no. 1, pp. 41–54.CrossRefGoogle Scholar
  33. 33.
    Luukkonen, T., Modelling and Control of Quadcopter, Independent Research Project in Applied Mathematics, Espoo: Aalto University, 2011.Google Scholar
  34. 34.
    Madani, T. and Benallegue, A., Backstepping Control for a Quadrotor Helicopter, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, 2006, pp. 3255–3260.Google Scholar
  35. 35.
    Madani, T. and Benallegue, A., Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique, IEEE Conf. on Decision and Control, San Diego, 2006, pp. 1515–1520.Google Scholar
  36. 36.
    Mustapa, M.Z., Altitude Controller Design for Quadcopter UAV, Jurnal Teknologi, 2015, pp. 181–188.Google Scholar
  37. 37.
    Nicol, C., Macnab, C.J.B., and Ramirez-Serrano, A., Robust Neural Network Control of a Quadrotor Helicopter, Canadian Conf. on Electrical and Computer Engineering, 2008, pp. 1233–1237.Google Scholar
  38. 38.
    Peaucelle, D., Fradkov, A.L., Andrievsky, B., and Mahout, V., Robust Simple Adaptive Control with Relaxed Passivity and PID Control of a Helicopter Benchmark, Preprints of the 18th IFAC World Congr., Milano, 2011, pp. 2315–2320.Google Scholar
  39. 39.
    Regula, G. and Lantos, B., Backstepping Based Control Design with State Estimation and Path Tracking to an Indoor Quadrotor Helicopter, Periodica Polytech. Electr. Eng., 2010, pp. 1–10.Google Scholar
  40. 40.
    Rich, M., Model Development, System Identification, and Control of a Quadrotor Helicopter, Graduate Theses and Dissertations, Iowa State University, Ames, 2015.Google Scholar
  41. 41.
    Roberts, J.F., Stirling, T.S., Zufferey, J.-C., and Floreano, D., Quadrotor Using Minimal Sensing for Autonomous Indoor Flight, Eur. Micro Air Vehicle Conf. and Flight Competition (EMAV2007), 2007.Google Scholar
  42. 42.
    Schmidt, M.D., Simulation and Control of a Quadrotor Unmanned Aerial Vehicle, MSc Thesis, University of Kentucky, Kentucky, 2011.Google Scholar
  43. 43.
    Stevanovic, S., Kasac, J., and Stepanic, J., Robust Tracking Control of a Quadrotor Helicopter Without Velocity Measurement, Proc. 23rd Int. DAAAM Symp., 2012, vol. 23, no. 1, pp. 595–600.Google Scholar
  44. 44.
    Szafranski, G. and Czyba, R., Different Approaches of PID Control UAV Type Quadrotor, Proc. Int. Micro Air Vehicles Conf., 2011, pp. 70–75.Google Scholar
  45. 45.
    Zhen, H., Qi, X., and Dong, H., An Adaptive Block Backstepping Controller for Attitude Stabilization of a Quadrotor Helicopter, WSEAS Trans. Syst. Control, 2013, vol. 8, no. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations