Advertisement

Automation and Remote Control

, Volume 79, Issue 9, pp 1609–1620 | Cite as

Synthesis of Self-Checking Combination Devices Based on Allocating Special Groups of Outputs

  • D. V. Efanov
  • V. V. Sapozhnikov
  • Vl. V. Sapozhnikov
Control in Technical Systems
  • 3 Downloads

Abstract

We propose a new structure of a self-checking combinational device where, based on the properties of parity and Berger codes, as well as a code with the detection of all double errors in information vectors, the problem of detecting all single faults of logical elements can be solved without transforming the structure of the source device. The properties of binary codes with the detection of all double errors that can be used in constructing the proposed structure are considered. We give an example of constructing a new structure.

Keywords

combination device self-checking check circuit independent outputs unidirectionally independent outputs unidirectionally and asymmetrically independent outputs parity code Berger’s code code with the detection of double errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parkhomenko, P.P. and Sogomonyan, E.S., Osnovy tekhnicheskoi diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) (Fundamentals of Technical Diagnostics: Optimization of Testing Algorithms, Hardware), Moscow: Energoatomizdat, 1981.Google Scholar
  2. 2.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Dmitriev, V.V., New Structures of the Concurrent Error Detection Systems for Logic Circuits, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 300–312.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self- Checking Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz’, 1989.Google Scholar
  4. 4.
    Busaba, F.Y. and Lala, P.K., Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors, J. Electron. Testing: Theory Appl., 1994, no. 1, pp. 19–28.CrossRefGoogle Scholar
  5. 5.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V, Göessel, M., and Morozov, A.A., A Construction Method for Combinatorial Self-Checking Devices with Detection of All Single Faults, Elektron. Modelir., 1998, vol. 20, no. 6, pp. 70–80.Google Scholar
  6. 6.
    Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Göessel, M., A New Design Method for Self-Checking Unidirectional Combinational Circuits, J. Electron. Testing: Theory Appl., 1998, vol. 12, no. 1–2, pp. 41–53.Google Scholar
  7. 7.
    Morosow, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Göessel, M., Self-Checking Combinational Circuits with Unidirectionally Independent Outputs, VLSI Design, 1998, vol. 5, no. 4, pp. 333–345.CrossRefGoogle Scholar
  8. 8.
    Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-Checking Synchronous FSM Network Design with Low Overhead, VLSI Design, 2000, vol. 11, no. 1, pp. 47–58.CrossRefGoogle Scholar
  9. 9.
    Ghosh, S., Basu, S., and Touba, N.A., Synthesis of Low Power CED Circuits Based on Parity Codes, Proc. 23 IEEE VLSI Test Sympos. (VTS’05), 2005, pp. 315–320.Google Scholar
  10. 10.
    Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, New Jersey: Wiley, 2006.CrossRefzbMATHGoogle Scholar
  11. 11.
    Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking, Dordrecht: Springer Science+Business Media, 2008.Google Scholar
  12. 12.
    Aksenova, G.P., On Functional Diagnostics of Discrete Devices Operating with Imprecise Data, Probl. Upravlen., 2008, no. 5, pp. 62–66.Google Scholar
  13. 13.
    Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Summation Code Properties in Functional Control Circuits, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1117–1123.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kumar, S.S., Concurrent Error Detection and Correction for Orthogonal Latin Squares Encoders and Syndrome Computation, Int. J. Advanced Res. Comput. Engin. & Technol., 2015, vol. 4, no. 1, pp. 159–175.Google Scholar
  15. 15.
    Kumar, B.V.S. and Kumar, G.P., VLSI Design of Error Detection and Correction Orthogonal Latin Square Codes, Int. J. Advanced Res. Comput. Engin. & Technol., 2016, vol. 3, no. 10, pp. 2816–2819.Google Scholar
  16. 16.
    Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for Detecting a Logical Element Fault in a Combination Device under Concurrent Checking Based on Berger’s Code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 891–901.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hamming, R.W. Error Detecting and Correcting Codes, Bell Syst. Technic. J., 1950, vol. 29(2), pp. 147–160.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Blyudov, A., Analysis of Error-Detection Possibilities of CED Circuits Based on Hamming and Berger Codes, Proc. 11 IEEE East-West Design & Test Symp. (EWDTS‘2013), Rostov-on-Don, Russia, September 27–30, 2013, pp. 200–207.Google Scholar
  19. 19.
    Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Characteristic Features of Applying Hamming Codes for the Organization of Self-Checking Embedded Control Schemes, Izv. Vyssh. Uchebn. Zaved., Priborostroen., 2018, vol. 61, no. 1, pp. 47–59.CrossRefGoogle Scholar
  20. 20.
    Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Dmitriev, V., New Sum Code for Effective Detection of Double Errors in Data Vectors, Proc. 13 IEEE East-West Design & Test Symp. (EWDTS‘2015), Batumi, Georgia, September 26–29, 2015, pp. 154–159.Google Scholar
  21. 21.
    Dmitriev, V.V., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Sum Codes with Efficient Detection of Twofold Errors for Organization of Concurrent Error Detection Systems of Logical Devices, Autom. Remote Control, 2018, vol. 79, no. 4, pp. 665–678.CrossRefGoogle Scholar
  22. 22.
    Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Dmitriev, V., Weighted Sum Code Without Carries—is an Optimum Code with Detection of Any Double Errors in Data Vectors, Proc. 14 IEEE East-West Design & Test Symp. (EWDTS‘2016), Yerevan, Armenia, October 14–17, 2016, pp. 134–141.Google Scholar
  23. 23.
    Goessel, M., Morozov, A.A., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Study of Combinational Self- Checking Devices with Independent and Monotonic Independent Outputs, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 299–309.zbMATHGoogle Scholar
  24. 24.
    Kubalík, P. and Kubátová, H., Parity Codes Used for On-Line Testing in FPGA, Acta Polytechnika, 2005, vol. 45, no. 6, pp. 53–59.Google Scholar
  25. 25.
    Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), New York: IGI Global, 2011.CrossRefGoogle Scholar
  26. 26.
    Borecký, J., Kohlík, M., and Kubátová, H., Parity Driven Reconfigurable Duplex System, Microproces. Microsyst., 2017, vol. 52, pp. 251–260.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Efanov
    • 1
    • 2
  • V. V. Sapozhnikov
    • 3
  • Vl. V. Sapozhnikov
    • 3
  1. 1.“LocoTech-Signal” LLCMoscowRussia
  2. 2.Russian University of TransportMoscowRussia
  3. 3.Emperor Alexander I St. Petersburg State Transport UniversitySt. PetersburgRussia

Personalised recommendations