Advertisement

Automation and Remote Control

, Volume 79, Issue 7, pp 1255–1269 | Cite as

Synthesis of a Multi-Connected Digital Controller for a Robotized Vibration Isolation Platform Based on H-Optimization

  • L. A. Rybak
  • E. V. Gaponenko
  • A. V. Chichvarin
Robust, Adaptive, and Network Control

Abstract

We consider the problem of constructing multi-connected control of a robotic platform designed to protect technological objects and human operators from low-frequency influences on part of the moving base. The platform includes six drive mechanisms with stepper motors. The problem is solved by the methods of the modern theory of robust stabilization and optimal control based on H-optimization in the state space. We construct a mathematical model of the multidimensional system, taking into account the characteristics of electromechanical drives and using signals of feedback sensors as state variables. We give an example of synthesizing a multidimensional optimal stabilizing controller in the form of state feedback for a system with disturbances bounded in L2-norm. We define the feedback control structure and obtain the matrix of feedback coefficients. We also show the results of mathematical modeling.

Keywords

robotic platform multi-connected controller stabilization robust control Riccati equation optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meilakh, A.M., Stabilization of Linear Controlled Systems under Uncertainty Conditions, Autom. Remote Control, 1975, vol. 36, no. 2, pp. 349–351.MathSciNetGoogle Scholar
  2. 2.
    Boyd, S.L., el Chaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.CrossRefGoogle Scholar
  3. 3.
    Rybak, L.A., Chichvarin, A.V., and Shatokhin, Yu.A., Synthesis of Optimal Digital Controller for a Spatial Vibroisolation System as a Parallel Structure with an Electromechanical Drive, Probl. Mashinostroen. Nadezhn. Mashin, 2006, no. 3, pp. 81–86.Google Scholar
  4. 4.
    Polyak, B.T., Extended Superstability in Control Theory, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 567–576.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. I. Analysis, Autom. Remote Control, 2002, vol. 63, no. 8, pp. 1239–1254.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. II. Design, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1745–1763.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Pogonin, A.A., Rybak, L.A., Chichvarin, A.V., and Shatokhin, Yu.A., Mechatronic Technological Systems with Control Based on Superstability, Teor. Sist. Upravlen., 2008, no. 4, pp. 146–158.MATHGoogle Scholar
  8. 8.
    Francis, B.A., A Course in H∞ Control Theory, Berlin: Springer-Verlag, 1987.CrossRefGoogle Scholar
  9. 9.
    McFarlane, D.C. and Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant Description, New York: Springer-Verlag, 1990.CrossRefMATHGoogle Scholar
  10. 10.
    Zames, G., Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses, IEEE Trans. Autom. Control, 1981, vol. 26, pp. 301–320.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.Google Scholar
  12. 12.
    Doyle, J.C., Glover, R, Khargonekar, P.P., and Francis, B.A., State-Space Solutions to Standard H2 and H8 Control Problems, IEEE Trans. Autom. Control, 1989, vol. 34, no. 8, pp. 831–847.CrossRefMATHGoogle Scholar
  13. 13.
    Petersen, I.R. and Hollot, C.V., A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems, Automatica, 1986, vol. 22, no. 4, pp. 397–411.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kenjo, T., Stepping Motors and Their Microprocessor Controls, Oxford: Clarendon, 1984. Translated under the title Shagovye dvigateli i ikh mikroprotsessornye sistemy upravleniya, Moscow: Energoatomizdat, 1987.Google Scholar
  15. 15.
    Rybak, L.A., Cherkashin, N.N., Gun’kin, A.A., and Chichvarin, A.V., Modeling an Electromechanical Drive with a Hybrid Stepping Motor of a Robotic Platform [Online], Sovrem. Probl. Nauki Obrazov., 2014, no. 6. http://www.science-education.ru/120-17012
  16. 16.
    Magergut, V.Z., Ignatenko, V.A., Bazhanov, A.G., and Shaptala, V.G., Approaches to Constructing Discrete Models of Continuous Technological Processes for Synthesis of Controlling Automata, Vestn. Belgorodsk Gos. Tekhn. Univ. im. V.G. Shukhova, 2013, no. 2, pp. 100–102.Google Scholar
  17. 17.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  18. 18.
    Ji, P. and Wu, H., A Closed-Form Forward Kinematics Solution for the 6–6p Stewart Platform, IEEE Trans. Robot Automat., 2001, vol. 17, no. 4, pp. 522–526.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Merlet, J.-P., Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis, Int. J. Robot Res., 2004, vol. 23, no. 3, pp. 221–235.CrossRefGoogle Scholar
  20. 20.
    Parikh, P.J. and Lam, S.S.Y., A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators, IEEE Trans. Robot., 2005, vol. 21, no. 1, pp. 18–25.CrossRefGoogle Scholar
  21. 21.
    Mita, Ts., Khara, S. and Kondo, R., Vvedenie v tsifrovoe upravlenie (Introduction to Digital Control), Moscow: Mir, 1994.Google Scholar
  22. 22.
    Mahmoud, N.A. and Khalil, H.K., Robust Sontrol for a Nonlinear Servomechanism Problem, Int. J. Control, 1997, vol. 66, no. 6, pp. 779–802.CrossRefMATHGoogle Scholar
  23. 23.
    Khalil, H.K., Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models, IEEE Trans. Autom. Control, 1996, vol. 41, no. 2, pp. 177–188.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kuznetsov, D.F., Stokhasticheskie differentsial’nye uravneniya. Teoriya i praktika chislennogo resheniya (Stochastic Differential Equations. Theory and Practice of Numerical Solutions), St. Petersburg: Polytekh. Univ., 2010, 4th ed.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Rybak
    • 1
  • E. V. Gaponenko
    • 1
  • A. V. Chichvarin
    • 2
  1. 1.V.G. Shukhov Belgorod State Technological UniversityBelgorodRussia
  2. 2.Stary Oskol Technological Institute (Branch) of the National University of Science and Technology MISiSStary OskolRussia

Personalised recommendations