Advertisement

Automation and Remote Control

, Volume 79, Issue 7, pp 1240–1254 | Cite as

On Numerical Modeling of the Multidimensional Dynamic Systems under Random Perturbations with the 1.5 and 2.0 Orders of Strong Convergence

  • D. F. Kuznetsov
Stochastic Systems
  • 11 Downloads

Abstract

The paper was devoted to developing numerical methods with the orders 1.5 and 2.0 of strong convergence for the multidimensional dynamic systems under random perturbations obeying stochastic differential Ito equations. Under the assumption of a special mean-square convergence criterion, attention was paid to the methods of numerical modeling of the iterated Ito and Stratonovich stochastic integrals of multiplicities 1 to 4 that are required to realize the aforementioned numerical methods.

Keywords

iterated stochastic Ito integral Fourier series numerical method mean-square convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kloeden, P.E. and Platen, E., Numerical Solution of Stochastic Differential Equations, Berlin: Springer, 1992.CrossRefzbMATHGoogle Scholar
  2. 2.
    Arato, M., Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Berlin: Springer, 1982.CrossRefzbMATHGoogle Scholar
  3. 3.
    Shiryaev, A.N., Osnovy stokhasticheskoi finansovoi matematiki (Fundamentals of Stochastic Financial Mathematics), Moscow: Fazis, 1998, vols. 1,2.Google Scholar
  4. 4.
    Liptser, R.Sh. and Shiryaev, A.N., Statistika sluchainykh protsessov, Moscow: Nauka, 1974. Translated into English under the title Statistics of Random Processes, Berlin: Springer, 1978.Google Scholar
  5. 5.
    Milstein, G.N., Chislennoe integrirovanie stokhasticheskikh differentsial’nykh uravnenii (Numerical Integration of Stochastic Differential Equations), Sverdlovsk: Ural’sk. Univ., 1988.Google Scholar
  6. 6.
    Milstein, G.N. and Tretyakov, M.V., Stochastic Numerics for Mathematical Physics, Berlin: Springer, 2004.CrossRefzbMATHGoogle Scholar
  7. 7.
    Kloeden, P.E., Platen, E., and Schurz, H., Numerical Solution of SDE Through Computer Experiments, Berlin: Springer, 1994.CrossRefzbMATHGoogle Scholar
  8. 8.
    Platen, E. and Wagner, W., On a Taylor Formula for a Class of Ito Processes, Probab. Math. Statist., 1982, no. 3, pp. 37–51.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kloeden, P.E. and Platen, E., The Stratonovich and Ito–Taylor Expansions, Math. Nachr., 1991, vol. 151, pp. 33–50.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kul’chitskii, O.Yu. and Kuznetsov, D.F., Unified Taylor–Ito Expansion, Zap. Nauchn. Seminarov POMI RAN, Veroyatn. Statist., 2, 1997, vol. 244, pp. 186–204.Google Scholar
  11. 11.
    Kuznetsov, D.F., New Representations of the Taylor–Stratonovich Expansion, Zap. Nauchn. Seminarov POMI RAN, Veroyatn. Statist., 4, 2001, vol. 278, pp. 141–158.zbMATHGoogle Scholar
  12. 12.
    Gikhman, I.I. and Skorokhod, A.V., Stokhasticheskie differentsial’nye uravneniya i ikh prilozheniya (Stochastic Differential Equations and Their Applications), Kiev: Naukova Dumka, 1982.zbMATHGoogle Scholar
  13. 13.
    Kuznetsov, D.F., Chislennoe integrirovanie stokhasticheskikh differentsial’nykh uravnenii. 2 (Numerical Integration of Stochastic Differential Equations. 2), St. Petersburg: Polytekhn. Univ., 2006.Google Scholar
  14. 14.
    Kuznetsov, D.F., New Representations of the Explicit One-step Numerical Methods for Stochastic Differential Equations with Transition Component, Zh. Vychisl. Mat. Mat. Fiz., 2001, vol. 41, no. 6, pp. 922–937.MathSciNetGoogle Scholar
  15. 15.
    Kloeden, P.E., Platen, E., and Wright, I.W., The Approximation of Multiple Stochastic Integrals, Stoch. Anal. Appl., 1992, vol. 10, no. 4, pp. 431–441.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Allen, E., Approximation of Triple Stochastic Integrals Through Region Subdivision, Commun. Appl. Anal. (Special Tribute Issue to Prof. V. Lakshmikantham), 2013, vol. 17, pp. 355–366.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kuznetsov, D.F., Stokhasticheskie differentsial’nye uravneniya: teoriya i praktika chislennogo resheniya (Stochastic Differential Equations: Theory and Practice of Numerical Solution), St. Petersburg: Polytekhn. Univ., 2007.Google Scholar
  18. 18.
    Kuznetsov, D.F., Strong Approximation of Multiple Ito and Stratonovich Stochastic Integrals: Multiple Fourier Series Approach, St. Petersburg: Polytekhn. Univ., 2011, 2nd ed.zbMATHGoogle Scholar
  19. 19.
    Kuznetsov, D.F., Multiple Ito and Stratonovich Stochastic Integrals: Fourier–Legendre and Trigonometric Expansions, Approximations, Formulas, Electr. J. Differ. Equat. Control Process, 2017, no. 1, pp. A.1–A.385.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations