Advertisement

Automation and Remote Control

, Volume 79, Issue 7, pp 1175–1190 | Cite as

Sparse Feedback Design in Discrete-Time Linear Systems

  • A. V. Bykov
  • P. S. Shcherbakov
Linear Systems
  • 29 Downloads

Abstract

The subject of this paper is the analysis of sparse state feedback design procedures for linear discrete-time systems. By sparsity we mean the presence of zero rows in the gain matrix; this requirement is natural in the engineering practice when designing “economy” control systems which make use of a small amount of control inputs. Apart from the design of stabilizing sparse controllers, the linear-quadratic regulation problem is considered in the sparse formulation. Also, we consider a regularization scheme typical to the ℓ1-optimization theory. The efficiency of the approach is illustrated via numerical examples.

Keywords

linear discrete-time systems sparse feedback convex approximation linear-quadratic regulation regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruckstein, A., Donoho, D., and Elad, M., From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images, SIAM Review, 2009, vol. 51, no. 1, pp. 34–81.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barabanov, A.E. and Granichin, O.N., Optimal Controller for Linear Plant with Bounded Noise, Autom. Remote Control, 1984, vol. 45, no. 5, pp. 578–584.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fazel, M., Hindi, H., and Boyd, S.P., A Rank Minimization Heuristic with Application to Minimum Order System Approximation, Proc. Am. Control Conf., Arlington, VA, USA, 2001, pp. 4734–4739.Google Scholar
  4. 4.
    Lin, F., Fardad, M., and Jovanović, M.R., Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers, IEEE Trans. Automat. Control, 2013, vol. 58, no. 9, pp. 2426–2431.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dhingra, N.K. and Jovanović, M.R., A Method of Multipliers Algorithm for Sparsity-promoting Optimal Control, Proc. Am. Control Conf., Boston, MA, USA, 2016, pp. 1942–1947.Google Scholar
  6. 6.
    Dhingra, N.K., Wu, X., and Jovanović, M.R., Sparsity-promoting Optimal Control of Systems with Invariances and Symmetries, IFAC-PapersOnLine, 2016, vol. 49, no. 18, pp. 636–641.CrossRefGoogle Scholar
  7. 7.
    Arastoo, R., GhaedSharaf, Y., Kothare, M.V., et al., Optimal State Feedback Controllers with Strict Row Sparsity Constraints, Proc. Am. Control Conf., Boston, MA, USA, 2016, pp. 1948–1953.Google Scholar
  8. 8.
    Caponigro, M., Fornasier, M., Piccoli, B., et al., Sparse Stabilization and Control of Alignment Models, Math. Models Meth. Appl. Sci., 2015, vol. 25, no. 3, pp. 521–564.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Parayev, Yu.I. and Smagin, V.I., Problems of Simplifying the Structure of Optimal Controllers, Avtomat. Telemekh., 1975, no. 6, pp. 180–183.Google Scholar
  10. 10.
    Wu, X., Dörfler, F., and Jovanović, M.R., Input-output Analysis and Decentralized Optimal Control of Inter-area Oscillations in Power Systems, IEEE Trans. Power Syst., 2016, vol. 31, no. 3, pp. 2434–2444.CrossRefGoogle Scholar
  11. 11.
    Polyak, B., Khlebnikov, M., and Shcherbakov, P., An LMI Approach to Structured Sparse Feedback Design in Linear Control Systems, Proc. Eur. Control Conf., Zurich, 2013, pp. 833–838.Google Scholar
  12. 12.
    Polyak, B.T, Khlebnikov, M.V., and Shcherbakov, P.S., Sparse Feedback in Linear Control Systems, Autom. Remote Control, 2014, vol. 75, no. 12, pp. 2099–2111.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bykov, A.V. and Shcherbakov, P.S., Approximations of the Matrix l0-quasinorm in the Design of Sparse Controllers: A Numerical Study of Efficiency, Upravlen. Bol’shimi Sist., 2017, no 68, pp. 47–73.Google Scholar
  14. 14.
    Leibfritz, F., COMPleib: Constraint Matrix-Optimization Problem Library—A Collection of Test Examples for Nonlinear Semidefinite Programs, Control System Design and Related Problems, Technical Report. University of Trier, Germany, 2004. http://www.complib.de Google Scholar
  15. 15.
    Bykov, A.V., Design of Sparse Controllers in Linear Discrete Time Control Systems, Tr. XII Vseross. soveshchaniya po problemam upravleniya (Proc. XII All-Russia Meeting on Control Problems), Moscow: Inst. Probl. Upravlen., 2014, pp. 833–841.Google Scholar
  16. 16.
    Bykov, A.V. and Shcherbakov, P.S., Optimal Sparse Feedback Design in Linear Discrete Time Systems, Mater. XXII Mezhdunar. konf. po avtomat. upravleniyu “Avtomatika-2015” (Proc. XXII Intern. Conf. on Automatic Control “Automatics-2015”), Kiev, 2015, pp. 30–31.Google Scholar
  17. 17.
    Khlebnikov, M.V., Control of Linear Systems Subjected to Exogenous Disturbances: Combined Feedback, Autom. Remote Control, 2016, vol. 77, no. 7, pp. 1141–1151.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Polyak, B.T., Khlebnikov, M.V, and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.Google Scholar
  19. 19.
    Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming, version 2.1, 2011. http://cvxr.com/cvx Google Scholar
  20. 20.
    Toh, K.C., Todd, M.J., and Tütüncü, R.H., SDPT3—A MATLAB Software Package for Semidefinite Programming, version 1.3, Optim. Meth. Software, 1999, vol. 11, no. 1–4, pp. 545–581.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.zbMATHGoogle Scholar
  22. 22.
    Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (A Course in Automatic Control Theory), Moscow: Nauka, 1986.Google Scholar
  23. 23.
    Khlebnikov, M.V., Shcherbakov, P.S., and Chestnov, V.N., Linear-Quadratic Regulator. I. A New Solution, Autom. Remote Control, 2015, vol. 76, no. 12, pp. 2143–2155.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Khlebnikov, M.V., Comparison of Quadratic Performance Indices: An Ellipsoid Approach, Stoch. Optim. Informat., 2014, vol. 10, no 1, pp. 145–156.Google Scholar
  25. 25.
    Levine, W. and Athans, M., On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems, IEEE Trans. Automat. Control, 1970, vol. 15, no. 1, pp. 44–48.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Candès, E.J., Romberg, J.K., and Tao, T., Stable Signal Recovery from Incomplete and Inaccurate Measurements, Commun. Pure Appl. Math., 2006, vol. 59, no. 8, pp. 1207–1223.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Deb, K. and Miettinen, K., Multiobjective Optimization: Interactive and Evolutionary Approaches, Berlin: Springer-Verlag, 2008.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.UCHi.RUMoscowRussia
  2. 2.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations