Advertisement

Automation and Remote Control

, Volume 79, Issue 6, pp 1148–1167 | Cite as

Equilibrium Trajectories in Dynamical Bimatrix Games with Average Integral Payoff Functionals

  • N. A. KrasovskiiEmail author
  • A. M. Tarasyev
Mathematical Game Theory and Applications
  • 27 Downloads

Abstract

This paper considers models of evolutionary non-zero-sum games on the infinite time interval. Methods of differential game theory are used for the analysis of game interactions between two groups of participants. We assume that participants in these groups are controlled by signals for the behavior change. The payoffs of coalitions are defined as average integral functionals on the infinite horizon. We pose the design problem of a dynamical Nash equilibrium for the evolutionary game under consideration. The ideas and approaches of non-zero-sum differential games are employed for the determination of the Nash equilibrium solutions. The results derived in this paper involve the dynamic constructions and methods of evolutionary games. Much attention is focused on the formation of the dynamical Nash equilibrium with players strategies that maximize the corresponding payoff functions and have the guaranteed properties according to the minimax approach. An application of the minimax approach for constructing optimal control strategies generates dynamical Nash equilibrium trajectories yielding better results in comparison to static solutions and evolutionary models with the replicator dynamics. Finally, we make a comparison of the dynamical Nash equilibrium trajectories for evolutionary games with the average integral payoff functionals and the trajectories for evolutionary games with the global terminal payoff functionals on the infinite horizon.

Keywords

dynamical bimatrix games average integral payoffs characteristics of Hamilton- Jacobi equations equilibrium trajectories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I., Optimization in Mean and Phase Transitions in Controlled Dynamical Systems, Funct. Anal. Appl., 2002, vol. 36, no. 2, pp. 83–92.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Vorob’ev, N.N., Teoriya igr dlya ekonomistov-kibernetikov (The Theory of Games for Economists-Cyberneticians), Moscow: Nauka, 1985.zbMATHGoogle Scholar
  3. 3.
    Davydov, A.A. and Mena Matos, H., Generic Phase Transitions and Profit Singularities in Arnold’s Model, Sb. Math., 2007, vol. 198, no. 1, pp. 17–37.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kleimenov, A.F., Neantagonisticheskie pozitsionnye differentsial’nye igry (Non-Zero-Sum Positional Differential Games), Yekaterinburg: Nauka, 1993.zbMATHGoogle Scholar
  5. 5.
    Kolmogorov, A.N., On the Analytic Methods of Probability Theory, Usp. Mat. Nauk, 1938, no. 5, pp. 5–41.Google Scholar
  6. 6.
    Krasovskii, N.A., Kryazhimskii, A.V., and Tarasyev, A.M., Hamilton–Jacobi Equations in Evolutionary Games, Tr. Inst. Mat. Mekh. UrO RAN, 2014, vol. 20, no. 3, pp. 114–131.MathSciNetGoogle Scholar
  7. 7.
    Krasovskii, N.A. and Tarasyev, A.M., Search of Maximum Points for a Vector Criterion Based on Decomposition Properties, Tr. Inst. Mat. Mekh. UrO RAN, 2009, vol. 15, no. 4, pp. 167–182.Google Scholar
  8. 8.
    Krasovskii, N.A. and Tarasyev, A.M., Decomposition Algorithm of Searching Equilibria in a Dynamical Game, Autom. Remote Control, 2015, vol. 76, no. 10, pp. 1865–1893.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Krasovskii, N.A. and Tarasyev, A.M., Ravnovesnye resheniya v dinamicheskikh igrakh (Equilibrium Solutions in Dynamical Games), Yekaterinburg: UrGAU, 2015.Google Scholar
  10. 10.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.zbMATHGoogle Scholar
  11. 11.
    Kryazhimskii, A.V. and Osipov, Yu.S., On Differential Evolutionary Games, Tr. Mat. Inst. Stekl., 1995, vol. 211, pp. 257–287.Google Scholar
  12. 12.
    Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Uncertainty), Moscow: Nauka, 1977.zbMATHGoogle Scholar
  13. 13.
    Mazalov, V.V. and Rettieva, A.N., Asymmetry in a Cooperative Bioresource Management Problem, Upravlen. Bol’sh. Sist., 2015, no. 55, pp. 280–325.zbMATHGoogle Scholar
  14. 14.
    Mazalov, V.V. and Tokareva, Yu.S., Equilibrium in Bargaining Model with Non-Uniform Distribution for Reservation Prices, Mat. Teor. Igr Pril., 2011, vol. 3, no. 2, pp. 37–49.zbMATHGoogle Scholar
  15. 15.
    Petrosjan, L.A. and Zakharov, V.V., Matematicheskie modeli v ekologii (Mathematical Models in Ecology), St.-Petersburg: SPbGU, 1997.Google Scholar
  16. 16.
    Petrosjan, L.A. and Zenkevich, N.A., Principles of Stable Cooperation, Mat. Teor. Igr Pril., 2009, vol. 1, no. 1, pp. 106–123.Google Scholar
  17. 17.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1969.Google Scholar
  18. 18.
    Subbotin, A.I., Minimaksnye neravenstva i uravneniya Gamil’tona–Yakobi (Minimax Inequalities and Hamilton–Jacobi Equations), Moscow: Nauka, 1991.zbMATHGoogle Scholar
  19. 19.
    Subbotin, A.I. and Tarasyev, A.M., Conjugate Derivatives of the Value Function of a Differential Game, Soviet Math. Dokl., 1985, vol. 32, no. 1, pp. 162–166.zbMATHGoogle Scholar
  20. 20.
    Subbotina, N.N., Cauchy’s Method of Characteristics and Generalized Solutions of Hamilton–Jacobi–Bellman Equations, Dokl. AN SSSR, 1991, vol. 320, no. 3, pp. 556–561.Google Scholar
  21. 21.
    Ushakov, V.N., On the Problem of Constructing Stable Bridges in a Differential Game of Approach and Avoidance, Eng. Cybern., 1980, vol. 18, no. 4, pp. 16–23.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ushakov, V.N., Uspenskii, A.A., and Lebedev, P.D., Nonsmooth Analysis Methods for Constructions of Differential Games and Approximations of Control Problems Solutions, Vestn. SPbGU, Ser. Mat., Mekh., Astron., 2013, vol. 10, no. 3, pp. 157–167.Google Scholar
  23. 23.
    Aubin, J.-P., A Survey of Viability Theory, SIAM J. Control Optimiz., 1990, vol. 28, no. 4, pp. 749–788.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Basar, T. and Olsder, G.J., Dynamic Noncooperative Game Theory, London: Academic, 1982.zbMATHGoogle Scholar
  25. 25.
    Crandall, M.G. and Lions, P.-L., Viscosity Solutions of Hamilton–Jacobi Equations, Trans. AMS, 1983, vol. 277, no. 1, pp. 1–42.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Friedman, D., Evolutionary Games in Economics, Econometrica, 1991, vol. 59, no. 3, pp. 637–666.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hofbauer, J. and Sigmund, K., The Theory of Evolution and Dynamical Systems, Cambridge: Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  28. 28.
    Intriligator, M., Mathematical Optimization and Economic Theory, New York: Prentice-Hall, 1971.zbMATHGoogle Scholar
  29. 29.
    Krasovskii, A.N. and Krasovskii, N.N., Control under Lack of Information, Boston: Birkhauser, 1995.CrossRefzbMATHGoogle Scholar
  30. 30.
    Tarasyev, A.M., A Differential Model for a 2 × 2 Evolutionary Game Dynamics, IIASAWorking Paper WP-94-63, Laxenburg, Austria, 1994.Google Scholar
  31. 31.
  32. 32.
    The Forex Market, Schedules of Profitability of Bonds. http://www.fxstreet.ru.com/charts/bond-yield/

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural State Agrarian UniversityYekaterinburgRussia
  2. 2.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations