Automation and Remote Control

, Volume 79, Issue 6, pp 1074–1085 | Cite as

Fradkov Theorem-Based Control of MIMO Nonlinear Lurie Systems

  • A. A. Pyrkin
  • S. V. Aranovskiy
  • A. A. Bobtsov
  • S. A. Kolyubin
  • N. A. Nikolaev
Topical Issue


Consideration was given to the problem of adaptive output control of the class of MIMO (Multiple Input Multiple Output) systems that are functionally and parametrically uncertain. An approach to the design of the control law ensuring stabilization of the MIMO nonlinear Lurie system, that is, a system consisting of the linear part (strictly minimum-phase unit) and nonlinear static feedback unit, was proposed on the basis of the Fradkov theorem on feedback passification of linear systems.


nonlinear systems MIMO systems consecutive compensator output control parametrical uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobtsov, A.A. and Nikolaev, N.A., Fradkov Theorem-based Design of the Control of Nonlinear Systems with Functional and Parametric Uncertainties, Autom. Remote Control, 2005, vol. 66, no. 1, pp. 108–118.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fradkov, A.L., Synthesis of Adaptive System of Stabilization for Linear Dynamic Plants, Autom. Remote Control, 1974, vol. 35, no. 12, pp. 1960–1966.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fradkov, A.L., Quadratic Lyapunov Functions in the Problem of Adaptive Stabilization of Linear Dynamic Plant, Sib. Mat. Zh., 1976, no. 2, pp. 436–446.zbMATHGoogle Scholar
  4. 4.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.zbMATHGoogle Scholar
  5. 5.
    Fradkov, A.L., Upravlenie v slozhykh sistemakh (Control in Complex Systems), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  6. 6.
    Khalil, H.K., Nonlinear Systems, New Jersey: Prentice Hall, 2002, 3rd ed.zbMATHGoogle Scholar
  7. 7.
    Nikiforov, V.O., Robust High-order Tuner of Simplified Structure Automatica, 1999, vol. 35, no. 8, pp. 1409–1415.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  9. 9.
    Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. Analitical Approach to Analysis and Design of the Matrix Systems), Kaluga: Izd. Nauch. Lit. Bochkarevoi, 2006.Google Scholar
  10. 10.
    Arcak, M. and Kokotovic, P., Feasibility Conditions for Circle Criterion Design, Syst. Control Lett., 2001, vol. 42, no. 5, pp. 405–412.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arcak, M., Larsen, M., and Kokotovic, P., Circle and Popov Criteria as Tools for Nonlinear Feedback Design, in 15th Triennial World Cong. IFAC, Barcelona, Spain, 2002.Google Scholar
  12. 12.
    Arcak, M., Larsen, M., and Kokotovic, P., Circle and Popov Criteria as Tools for Nonlinear Feedback Design, Automatica, 2003, vol. 39, no. 4, pp. 643–650.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Qian, C. and Lin, W., Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm, IEEE Trans. Automat. Control, 2002, vol. 47, no. 10, pp. 1710–1715.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tsinias, J., A Theorem on Global Stabilization of Nonlinear Systems by Linear Feedback, Syst. Control Lett., 1991, vol. 17, no. 5, pp. 357–362.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Furtat, I.B., Robust Synchronization of Dynamical Networks with Compensation of Disturbances, Autom. Remote Control, 2011, vol. 72, no. 12, pp. 2516–2526.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Furtat, I.B., Consensus Output Control of Linear Dynamic Network with Perturbation Compensation, Mekhatronika, Avtomatiz., Upravl., 2011, no. 4, pp. 12–18.Google Scholar
  18. 18.
    Furtat, I.B., Suboptimal Control of the Nonlinear Multiagent Systems, Nauch. Tekhn. Vestn. Inform. Tekhnol. Mekh. Optiki, 2013, no. 1 (83), pp. 19–23.Google Scholar
  19. 19.
    Furtat, I.B., Robust Control of a Certain Class of Two-channel Nonminimal-phase Dynamic Networks, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2014, no. 1, pp. 35–48.MathSciNetGoogle Scholar
  20. 20.
    Tsykunov, A.V., Adaptivnoe i robustnoe upravlenie dinamicheskimi ob”ektami (Adaptive and Robust Control of Dynamic Plants), Moscow: Fizmatlit, 2009.Google Scholar
  21. 21.
    Parsheva, E.A., Adaptive Decentralized Control of Multivariable Plants with Scalar Input and Output and Nonminimal Realization of the Reference Model, Autom. Remote Control, 2005, vol. 66, no. 8, pp. 1296–1304.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bobtsov, A.A., Robust Output-Control for a Linear System with Uncertain Coefficients, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1794–1802.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bobtsov, A.A., Faronov, M.V., Furtat, I.B., Pyrkin, A.A., and Arustamov, S.A., Adaptive Control of Linear MIMO Systems, in 6th Int. Congr. on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, 2014, pp. 584–589.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Pyrkin
    • 1
    • 2
  • S. V. Aranovskiy
    • 2
    • 3
  • A. A. Bobtsov
    • 2
    • 4
  • S. A. Kolyubin
    • 2
  • N. A. Nikolaev
    • 2
  1. 1.Hangzhou Dianzi UniversityHangzhouChina
  2. 2.ITMO University (National Research University of Information Technologies, Mechanics and Optics)St. PetersburgRussia
  3. 3.CentraleSupélec—IETRCesson-SévignéFrance
  4. 4.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations