Advertisement

Automation and Remote Control

, Volume 79, Issue 6, pp 957–995 | Cite as

New Results on the Application of the Passification Method. A Survey

  • B. R. Andrievskii
  • A. A. Selivanov
Topical Issue

Abstract

Foundations for the passification method were laid out by A.L. Fradkov in 1974 in the context of the adaptive stabilization problem for the output of a linear dynamic plant. Over the past decade, the passification method has been further developed, and new applications have appeared both in the field of systems theory and in practical control problems. This survey is devoted to these new results. We give a brief review of the fundamentals of the passification method, results of its applications in problems of adaptive and robust control, synchronization, control and estimation under communication constraints. We pay special attention to the method’s application for networking systems. We also present some other applications of the passification method that do not fall into these categories.

Keywords

passification passivity adaptation robust control synchronization communication restrictions lag network systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fradkov, A.L., Synthesis of Adaptive System of Stabilization of Linear Dynamic Plants, Autom. Remote Control, 1974, vol. 35, no. 12, pp. 1960–1966.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fradkov, A.L., Quadratic Lyapunov Functions in Adaptive Stabilization Problem for a Linear Dynamical Plant, Sib. Mat. Zh., 1976, vol. 17, no. 2, pp. 436–445.Google Scholar
  3. 3.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control for Dynamic Plants), Moscow: Nauka, 1981.zbMATHGoogle Scholar
  4. 4.
    Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh: bespoiskovye metody (Adaptive Control in Complex Systems: Search-Free Approaches), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  5. 5.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.zbMATHGoogle Scholar
  6. 6.
    Fradkov, A.L., Passification of Non-Square Linear Systems and Feedback Yakubovich–Kalman–Popov Lemma, Eur. J. Control, 2003, no. 6, pp. 573–582.zbMATHGoogle Scholar
  7. 7.
    Fradkov, A.L., A Scheme of Speed Gradient and Its Application in Problems of Adaptive Control, Autom. Remote Control, 1980, vol. 41, no. 9, pp. 1333–1342.zbMATHGoogle Scholar
  8. 8.
    Fradkov, A.L., Adaptive Stabilization of Minimum-Phase Plants with Vector Input without Measuring Output Derivatives, Dokl. Ross. Akad. Nauk, 1994, vol. 337, no. 5, pp. 550–552.zbMATHGoogle Scholar
  9. 9.
    Andrievsky, B., Fradkov, A.L., and Kaufman, H., Necessary and Sufficient Conditions for Almost Strict Positive Realness and Their Application to Direct Implicit Adaptive Control Systems, Proc. Am. Control Conf., Baltimore, USA, 1994, pp. 1265–1266.Google Scholar
  10. 10.
    Andrievsky, B.R., Churilov, A.N., and Fradkov, A.L., Feedback Kalman–Yakubovich Lemma and Its Applications to Adaptive Control, Proc. 35 Conf. Decision Control (CDC’96), Kobe, Japan: IEEE, 1996, December, pp. 4537–4542.Google Scholar
  11. 11.
    Fradkov, A.L. and Hill, D.J., Exponential Feedback Passivity and Stabilizability of Nonlinear Systems, Automatica, 1998, vol. 34, no. 6, pp. 697–703.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bondarko, V.A. and Fradkov, A.L., Necessary and Sufficient Conditions for the Passivicability of Linear Distributed Systems, Autom. Remote Control, 2003, vol. 64, no. 4, pp. 517–530.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Andrievskii, B.R. and Fradkov, A.L., Method of Passification in Adaptive Control, Estimation, and Synchronization, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1699–1731.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bobtsov, A.A. and Nikolaev, N.A., Fradkov Theorem-based Design of the Control of Nonlinear Systems with Functional and Parametric Uncertainties, Autom. Remote Control, 2005, vol. 66, no. 1, pp. 108–118.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bobtsov, A.A., Adaptivnoe i robastnoe upravlenie neopredelennymi sistemami po vykhodu (Adaptive and Robust Output Control of Uncertain Systems), St. Petersburg: Nauka, 2011.Google Scholar
  16. 16.
    Bobtsov, A.A., and Nikiforov, V.O., Adaptive Output Control: Problem Settings, Applied Problems, and Solutions, Nauchn.-Tekhn. Inform. Tekhnol, Mekh. Opt., 2013, vol. 1, no. 83, pp. 1–14.Google Scholar
  17. 17.
    Barkana, I., Comments on “Design of Strictly Positive Real Systems Using Constant Output Feedback,” IEEE Trans. Autom. Control, 2004, vol. 9, no. 11, pp. 2091–2093.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Barkana, I. and Fradkov, A.L., Simple and Robust Adaptive Control, Int. J. Adaptive Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 563–566.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Willems, J.C., Dissipative Dynamical Systems. Part I: General Theory, Arch. Ration. Mech. Anal., 1972, vol. 45, no. 5, pp. 321–351.zbMATHGoogle Scholar
  20. 20.
    Willems, J.C., Dissipative Dynamical Systems. Part II: Linear Systems with Quadratic Supply Rates, Arch. Ration. Mech. Anal., 1972, vol. 45, no. 5, pp. 352–393.zbMATHGoogle Scholar
  21. 21.
    Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input–Output Properties, New York: Academic, 1975. Translated under the title Sistemy s obratnoi svyaz’yu: vkhod-vykhodnye sootnosheniya, Moscow: Nauka, 1983.zbMATHGoogle Scholar
  22. 22.
    Pogromsky, A., Passivity Based Design of Synchronizing Systems, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 1998, vol. 8, no. 2, pp. 295–319.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fradkov, A.L. and Pogromsky, A.Y., Introduction to Control of Oscillations and Chaos, World Scientific Series on Nonlinear Science. Series A, vol. 35, Singapore: World Scientific, 1998.zbMATHGoogle Scholar
  24. 24.
    Polushin, I.G., Fradkov, A.L., and Khill, D.D., Passivity and Passification of Nonlinear Systems, Autom. Remote Control, 2000, vol. 61, no. 3, pp. 355–388.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Bao, J. and Lee, P.L., Process Control. The Passive Systems Approach, London: Springer-Verlag, 2007.Google Scholar
  26. 26.
    Proskurnikov, A.V. and Mazo, M., Jr., Simple Synchronization Protocols for Heterogeneous Networks: Beyond Passivity, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 9426–9431.Google Scholar
  27. 27.
    Tôrres, L., Hespanha, J., and Moehlis, J., Synchronization of Identical Oscillators Coupled Through a Symmetric Network with Dynamics: A Constructive Approach with Applications to Parallel Operation of Inverters, IEEE Trans. Autom. Control, 2015, vol. 60, no. 12, pp. 3226–3241.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Barkana, I., Teixeira, M., and Hsu, L., Mitigation of Symmetry in Positive Realness for Adaptive Control, Automatica, 2006, vol. 42, no. 9, pp. 1611–1616.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gusev, S.V. and Likhtarnikov, A.L., Kalman–Popov–Yakubovich Lemma and the S-Procedure: A Historical Essay, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1768–1810.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Andrievskii, B.R., Stotskii, A.A., and Fradkov, A.L., Velocity Gradient Algorithms in Control and Adaptation, Autom. Remote Control, 1988, vol. 49, no. 12, pp. 1533–1564.MathSciNetGoogle Scholar
  31. 31.
    Petrov, B.N., Rutkovskii, V.Yu., and Zemlyakov, S.D., Adaptivnoe koordinatno-parametricheskoe upravlenie nestatsionarnymi ob”ektami (Adaptive Coordinate-Parametric Control for Time-Varying Plants), Moscow: Nauka, 1980.zbMATHGoogle Scholar
  32. 32.
    Byrnes, C.I., Isidori, A., and Willems, J.C., Passivity, Feedback Equivalence, and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans. Autom. Control, 1991, vol. 36, no. 11, pp. 1228–1240.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Fradkov, A.L. and Andrievsky, B., Combined Adaptive Controller for UAV Guidance, Eur. J. Control, 2005, vol. 11, no. 1, pp. 71–79.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Fradkov, A.L., Passification of Linear Systems with Respect to Given Output, Proc. 2008 IEEE Conf. Decision Control (CDC 2008), Cancun, Mexico: IEEE, 2008, pp. 646–651.Google Scholar
  35. 35.
    Seron, M.M., Hill, D.J., and Fradkov A.L., Adaptive Passification of Nonlinear Systems, Proc. 33rd IEEE Conf. Dec. Control, Lake Buena Vista, Florida, 1994, 14–16 December, pp. 190–195.Google Scholar
  36. 36.
    Bar-Kana, I. and Kaufman, H., Global Stability and Performance of a Simplified Adaptive Algorithm, Int. J. Control, 1985, vol. 42, no. 6, pp. 1491–1505.zbMATHGoogle Scholar
  37. 37.
    Bar-Kana, I., Parallel Feedforward and Simplified Adaptive Control, Int. J. Adaptive Control Signal Proc., 1987, vol. 1, no. 2, pp. 95–109. http://dx.doi.org/10.1002/acs.4480010202 zbMATHGoogle Scholar
  38. 38.
    Bar-Kana, I., Robust Simplified Adaptive Stabilization of Not Necessarily Minimum-Phase Systems, Transact. ASME, J. Dynam. Syst., Measurement Control, 1989, September, pp. 364–370.Google Scholar
  39. 39.
    BarKana, I., Simple Adaptive Control: A Stable Direct Model Reference Adaptive Control Methodology—Brief Survey, Proc. 9 IFAC Workshop on Adaptation and Learning in Control and Signal Processing, Saint Petersburg, Russia, 2007. http://www.ifac-papersonline.net/Detailed/30246.html Google Scholar
  40. 40.
    Kaufman, H., Barkana, I., and Sobel, K., Direct Adaptive Control Algorithms, New York: Springer-Verlag, 1998.Google Scholar
  41. 41.
    Iwai, Z. and Mizumoto, I., Realization of Simple Adaptive Control by Using Parallel Feedforward Compensator, Int. J. Control, 1994, vol. 59, no. 6, pp. 1543–1565.MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ben Yamin, R., Yaesh, I., and Shaked, U., Simplified Adaptive Control with Guaranteed H Performance, Proc. 9 IFAC Workshop Adapt. Learning in Control Signal Proc. (ALCOSP’2007), vol. 9, Saint Petersburg: IFAC, 2007, 29–31 August. http://www.ifac-papersonline.net/Detailed/30250.html Google Scholar
  43. 43.
    Belkharraz, A.I. and Sobel, K., Simple Adaptive Control for Aircraft Control Surface Failures, IEEE Trans. Aerosp. Electron. Syst., 2007, vol. 43, no. 2, pp. 600–611.Google Scholar
  44. 44.
    Fradkov, A.L., Grigoriev, G., Junussov, I.A., and Selivanov, A., Decentralized Output Feedback Synchronization of Dynamical Networks, The Sixth Int. Conf. Different. Function. Different. Equat., 2011, pp. 22–23.Google Scholar
  45. 45.
    Ulrich, S., Hayhurst, D.L., Saenz-Otero, A., et al., Simple Adaptive Control for Spacecraft Proximity Operations, Proc. AIAA Guidance, Navigation, and Control Conf., AIAA SciTech Forum (AIAA 2014-1288), Maryland, USA, 2014, pp. 1–23.Google Scholar
  46. 46.
    Peaucelle, D., Fradkov, A.L., and Andrievsky, B., Passification-based Adaptive Control of Linear Systems: Robustness Issues, Int. J. Adapt. Control Signal Proc., 2008, vol. 22, no. 6, pp. 590–608.MathSciNetzbMATHGoogle Scholar
  47. 47.
    Ioannou, P. and Kokotović, P., Instability Analysis and Improvement of Robustness of Adaptive Control, Automatica, 1984, vol. 20, no. 5, pp. 583–594.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Åström, K. and Wittenmark, B., Adaptive Control, New York: Addison-Wesley, 1989.Google Scholar
  49. 49.
    Kočvara, M. and Stingl, M., On the Solution of Large-Scale SDP Problems by the Modified Barrier Method Using Iterative Solvers, Math. Programm. Ser. B, 2007, vol. 109, no. 2–3, pp. 413–444.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Peaucelle, D., and Fradkov, A.L., Robust Adaptive L2-Gain Control of Polytopic MIMO LTI Systems— LMI Results, Syst. Control Lett., 2008, vol. 57, no. 11, pp. 881–887.zbMATHGoogle Scholar
  51. 51.
    Iwai, Z. and Mizumoto, I., Robust and Simple Adaptive Control System, Int. J. Control, 1992, vol. 55, no. 6, pp. 1453–1470.MathSciNetzbMATHGoogle Scholar
  52. 52.
    Peaucelle, D., Khan, H.M., and Pakshin, P.V., LMI-based Analysis of Robust Adaptive Control for Linear Systems with Time-varying Uncertainty, Autom. Remote Control, 2009, vol. 70, no. 9, pp. 1540–1552.MathSciNetzbMATHGoogle Scholar
  53. 53.
    Peaucelle, D., Drouot, A., Pittet, C., and Mignot, J., Simple Adaptive Control without Passivity Assumption and Experiments on Satellite Attitude Control Demeter Benchmark, IFAC Proc., 2011, vol. 44, no. 1, pp. 6535–6540. http://www.sciencedirect.com/science/article/pii/S1474667016446549 Google Scholar
  54. 54.
    Eremin, E.L. and Chepak, L.V., Robust Nonlinear Control Algorithms for Time-Varying Scalar Plants, Informatika Sist. Upravlen., 2007, vol. 1, no. 13, pp. 149–160.Google Scholar
  55. 55.
    Bushmanova, Yu.A., Composite Control for Scalar Time-Varying Plants in Systems with Implicit Reference Model, Informatika Sist. Upravlen., 2007, vol. 2, no. 14, pp. 165–172.Google Scholar
  56. 56.
    Wang, N., Xu, W., and Chen, F., Robust Output Feedback Passification of Linear Systems with Unmodeled Dynamics, Circuit., Syst., Signal Proc., 2008, vol. 27, no. 5, pp. 645–656.MathSciNetzbMATHGoogle Scholar
  57. 57.
    Eremin, E.L., L-Dissipativity of a Hyperstable Control System under Structural Disturbance. II, Informatika Sist. Upravlen., 2007, vol. 1, no. 13, pp. 130–139.Google Scholar
  58. 58.
    Eremin, E.L., Adaptive Control System with Implicit Reference and Fast Correction Unit, Informatika Sist. Upravlen., 2012, vol. 1, no. 31, pp. 183–194.Google Scholar
  59. 59.
    Bobtsov, A.A., Output Control Algorithm with the Compensation of Biased Harmonic Disturbances, Autom. Remote Control, 2008, vol. 69, no. 8, pp. 1289–1296.MathSciNetzbMATHGoogle Scholar
  60. 60.
    Bobtsov, A.A., Adaptive Output Control with Compensation for a Harmonic Shifted Disturbance, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, vol. 1, pp. 45–48.MathSciNetGoogle Scholar
  61. 61.
    Bobtsov, A.A., Kremlev, A.S., and Pyrkin, A.A., Compensation of Harmonic Disturbances in Nonlinear Plants with Parametric and Functional Uncertainty, Autom. Remote Control, 2011, vol. 72, no. 1, pp. 111–118.MathSciNetzbMATHGoogle Scholar
  62. 62.
    Ulrich, S. and Sasiadek, J.Z., Decentralized Simple Adaptive Control of Nonlinear Systems, Int. J. Adaptiv. Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 750–763.MathSciNetzbMATHGoogle Scholar
  63. 63.
    Barkana, I., Output Feedback Stabilizability and Passivity in Nonstationary and Nonlinear Systems, Int. J. Adaptiv. Control Signal Proc., 2010, vol. 24, no. 7, pp. 568–591.MathSciNetzbMATHGoogle Scholar
  64. 64.
    Pakshin, P. and Peaucelle, D., LQR Parametrization of Static Output Feedback Gains for Linear Systems with Markovian Switching and Related Robust Stabilization and Passification Problems, Proc. 48th IEEE Conf. Decision Control jointly with 2009 28th Chinese Control Conf., CDC/CCC 2009, Shanghai, 2009, pp. 1157–1162.Google Scholar
  65. 65.
    Pakshin, P., Zhilina, T., and Peaucelle, D., Stabilization of Linear Systems with State Dependent Noise via Output Feedback and Its Application to Robust Control Design, IFAC Proc. Vol. (IFACPapersOnline), 2009, 19–21 August, vol. 14, no. 1, pp. 360–365, Proc. 14th Int. Conf. Methods Model. in Autom. Robot. (MMAR’09), Miedzyzdroje, Poland.Google Scholar
  66. 66.
    Razuvaeva, I.V. and Fradkov, A.L., Adaptive Control of Linear Systems Disturbed with Coordinate-Parametric White Noise Vestn. S.-Peterburg. Univ., Ser. 1. Mat. Mekhan. Astronom., 2009, vol. 3, pp. 61–69.Google Scholar
  67. 67.
    Fradkov, A.L., Razuvaeva, I., and Grigoriev, G., Passification Based Adaptive Control under Coordinate-Parametric White Noise Disturbances, IFAC Proc. Vol. (IFAC-PapersOnline), Proc. 8th IFAC Symp. Nonlinear Control Syst. (NOLCOS 2010), 2010, September 1–3, vol. 43, no. 14, pp. 659–664.Google Scholar
  68. 68.
    Sragovich, V.G., Adaptivnoe upravlenie (Adaptive Control), Moscow: Nauka, 1981.zbMATHGoogle Scholar
  69. 69.
    Bobtsov, A., Nikolaev, N., and Slita, O., Adaptive Control of Libration Angle of a Satellite, IFAC Proc. Vol. (IFAC-PapersOnline), 2006, 28–30 June, vol. 1, no. 1, pp. 83–88, Proc. 1st IFAC Conf. Anal. Control Chaot. Syst. (CHAOS’06), Reims, France.Google Scholar
  70. 70.
    Bobtsov, A., Nikolaev, N., and Slita, O., Control of Chaotic Oscillations of a Satellite, Appl. Math. Mechan., 2007, vol. 28, no. 7, pp. 893–900.MathSciNetzbMATHGoogle Scholar
  71. 71.
    Bobtsov, A., Nikolaev, N., and Slita, O., Adaptive Control of Libration Angle of a Satellite, Mechatronics, 2007, vol. 17, no. 4–5, pp. 271–276.zbMATHGoogle Scholar
  72. 72.
    Chen, L.-Q. and Liu, Y.-Z., Chaotic Attitude Motion of a Magnetic Rigid Spacecraft and Its Control, Int. J. Non-Linear Mechan., 2002, vol. 37, no. 3, pp. 493–504. http://www.sciencedirect.com/science/article/pii/S0020746201000233 MathSciNetzbMATHGoogle Scholar
  73. 73.
    Luzi, A.-R., Biannic, J.-M., Peaucelle, D., Pittet, C., and Mignot, J., Structured Adaptive Attitude Control of a Satellite, Int. J. Adaptiv. Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 664–685.MathSciNetzbMATHGoogle Scholar
  74. 74.
    Pittet, C., Luzi, A., Peaucelle, D., Biannic, J., and Mignot, J., In-flight Results of Adaptive Attitude Control Law for a Microsatellite, CEAS Space J., 2015, vol. 7, no. 2, pp. 291–302.Google Scholar
  75. 75.
    Ulrich, S., Sasiadek, J., and Barkana, I., Nonlinear Adaptive Output Feedback Control of Flexible-joint Space Manipulators with Joint Stiffness Uncertainties, J. Guidance, Control, Dynam., 2014, vol. 37, no. 6, pp. 1961–1975.Google Scholar
  76. 76.
    Fradkov, A.L., Andrievsky, B., and Peaucelle, D., Adaptive Passification-based Fault-tolerant Flight Control, IFAC Proc. Vol. (IFAC-PapersOnline), 2007, vol. 40, no. 7, pp. 715–720, Proc. 17th IFAC Sympo. Automatic Control in Aerospace (ACA’2007), Toulouse, France.  https://doi.org/10.3182/20070625-5-FR-2916.00122 Google Scholar
  77. 77.
    Fradkov, A.L., and Andrievsky, B., Passification-based Robust Flight Control Design, Automatica, 2011, vol. 47, no. 12, pp. 2743–2748.MathSciNetzbMATHGoogle Scholar
  78. 78.
    Andrievsky, B. and Tomashevich, S., Passification Based Signal-Parametric Adaptive Controller for Agents in Formation, IFAC Proc. Vol. (IFAC-PapersOnline), 2015, vol. 48, no. 11, pp. 222–226.  https://doi.org/10.1016/j.ifacol.2015.09.187 Google Scholar
  79. 79.
    Belyavskii, A.O. and Tomashevich, S.I., Synthesis of an Adaptive Control System for a Quadcopter with the Method of Passification, Upravlen. Bol’shimi Sist., 2016, vol. 63, pp. 155–181.Google Scholar
  80. 80.
    Tomashevich, S.I. and Belyavskii, A.O., A Two-Stage Testbed for Studying Control Algorithms for the Motion of a Quadcopter under Strong Wind, Izv. Ross. Akad. Raket Artill. Nauk, 2016, no. 2 (92), pp. 50–54.Google Scholar
  81. 81.
    Tomashevich, S. and Belyavskyi, A., Passification Based Simple Adaptive Control of Quadrotor, IFAC Proc. Vol. (IFAC-PapersOnline), 2016, vol. 49, pp. 281–286, Proc. 12th IFAC Int. Workshop Adaptat. Learning Control Signal Proc. (ALCOSP 2016), June 29–July 1, 2016, Eindhoven, The Netherlands.Google Scholar
  82. 82.
    Belyavskyi, A. and Tomashevich, S., Application of 2DOF Quadrotor-based Laboratory Testbed for Engineering Education, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta: IEEE, 2017, 3–6 July, pp. 939–944.Google Scholar
  83. 83.
    Tomashevich, S., Fradkov, A.L., Andrievsky, B., et al., Simple Adaptive Control of Quadrotor Attitude. Algorithms and Experimental Results, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta: IEEE, 2017, 3–6 July, pp. 933–938.Google Scholar
  84. 84.
    Shtessel, Y., Edwards, C., Fridman, L., and Levant, A., Sliding Mode Control and Observation, Ser.: Control Eng., New York: Birkhäuser, 2012.Google Scholar
  85. 85.
    Levant, A., Pridor, A., Gitizadeh, R., et al., Aircraft Pitch Control via Second Order Sliding Technique, AIAA J. Guidance, Control Dynam., 2000, vol. 23, no. 4, pp. 586–594.Google Scholar
  86. 86.
    Tomashevich, S., Borisov, O., Gromov, V., et al., Experimental Study on Robust Output Control for Quadcopters, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta, 2017, 3–6 July, pp. 1029–1034.Google Scholar
  87. 87.
    Tomashevich, S., and Belyavskyi, A., 2DOF Indoor Testbed for Quadrotor Identification and Control, Proc. 23rd Saint Petersburg Int. Conf. Integrat. Navigat. Syst. (ICINS 2016), Saint Petersburg, Russia, IEEE, 2016, pp. 373–376.Google Scholar
  88. 88.
    Matveev, A. and Savkin, A., Estimation and Control over Communication Networks, Boston: Birkhäuser, 2009.zbMATHGoogle Scholar
  89. 89.
    Nair, G., Fagnani, F., Zampieri, S., and Evans, R., Feedback Control under Data Rate Constraints: An Overview, Proc. IEEE, 2007, April, no. 1, pp. 108–137.Google Scholar
  90. 90.
    Andrievskii, B.R., Matveev, A.S., and Fradkov, A.L., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetzbMATHGoogle Scholar
  91. 91.
    Nair, G. and Evans, R., Exponential Stabilisability of Finite-Dimensional Linear Systems with Limited Data Rates, Automatica, 2003, vol. 39, pp. 585–593.MathSciNetzbMATHGoogle Scholar
  92. 92.
    Matveev, A. and Pogromsky, A., Observation of Nonlinear Systems via Finite Capacity Channels: Constructive Data Rate Limits, Automatica, 2016, vol. 70, pp. 217–229.MathSciNetzbMATHGoogle Scholar
  93. 93.
    Fradkov, A.L., Andrievsky, B., and Evans, R., Controlled Synchronization under Information Constraints, Physic. Rev. E, 2008, September, vol. 78, pp. 0362101–6.Google Scholar
  94. 94.
    Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Nonlinear Systems under Information Constraints, Chaos, 2008, vol. 18, no. 3, pp. 037109.MathSciNetzbMATHGoogle Scholar
  95. 95.
    Fradkov, A.L., Andrievsky, B., and Evans, R.J., Adaptive Observer-Based Synchronization of Chaotic Systems with First-order Coder in the Presence of Information Constraints, IEEE Trans. Circuit. Syst. I, 2008, vol. 55, no. 6, pp. 1685–1694.MathSciNetGoogle Scholar
  96. 96.
    Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Passifiable Lurie Systems via Limited-Capacity Communication Channel, IEEE Trans. Circuit. Syst. I, 2009, vol. 56, no. 2, pp. 430–439.MathSciNetGoogle Scholar
  97. 97.
    Andrievskii, B.R. and Fradkov, A.L., Adaptive Synchronization of Nonlinear Systems of One Class under Limited Throughput of the Communication Channel, Upravlen. Bol’shimi Sist., 2009, vol. 25, pp. 48–83.Google Scholar
  98. 98.
    Andrievskii, B.R. and Fradkov, A.L., Method of Passification in Synchronization and State Estimation Problems for Nonlinear Systems Via a Nonlinear Communication Channel, Upravlen. Bol’shimi Sist., 2011, vol. 35, pp. 20–58.Google Scholar
  99. 99.
    Fradkov, A.L., Andrievsky, B. and Ananyevskiy, M.S., Passification Based Synchronization of Nonlinear Systems under Communication Constraints and Bounded Disturbances, Automatica, 2015, vol. 55, pp. 287–293.MathSciNetzbMATHGoogle Scholar
  100. 100.
    Fradkov, A.L., Andrievsky, B., and Evans, R., Chaotic Observer-based Synchronization under Information Constraints, Physic. Rev. E, 2006, vol. 73, p. 066209.MathSciNetzbMATHGoogle Scholar
  101. 101.
    Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Autom. Control, 2000, vol. 45, no. 7, pp. 1279–1289.MathSciNetzbMATHGoogle Scholar
  102. 102.
    Liberzon, D., Hybrid Feedback Stabilization of Systems with Quantized Signals, Automatica, 2003, vol. 39, no. 9, pp. 1543–1554.MathSciNetzbMATHGoogle Scholar
  103. 103.
    Tatikonda, S. and Mitter, S., Control under Communication Constraints, IEEE Trans. Autom. Control, 2004, vol. 49, pp. 1056–1068.MathSciNetzbMATHGoogle Scholar
  104. 104.
    Nair, G.N., Evans, R.J., Mareels, I., and Moran, W., Topological Feedback Entropy and Nonlinear Stabilization, IEEE Trans. Automat. Control, 2004, September, vol. 49, no. 9, pp. 1585–1597.MathSciNetzbMATHGoogle Scholar
  105. 105.
    Goodman, D. and Gersho, A., Theory of an Adaptive Quantizer, IEEE Trans. Commun., 1974, August, vol. COM-22, no. 8, pp. 1037–1045.Google Scholar
  106. 106.
    Andrievsky, B., Adaptive Coding for Transmission of Position Information over the Limited-band Communication Channel, IFAC Proc. Vol. (IFAC-PapersOnline), 2007, vol. 40, pp. 447–452, Proc. 9th IFAC Workshop Adaptat. Learning Control and Signal Proc. (ALCOSP’2007), Saint Petersburg, Russia, August 29–31, 2007. http://www.IFAC-PapersOnLine.net Google Scholar
  107. 107.
    Gomez-Estern, F., Canudas de Wit, C., and Rubio, F.J.F., Adaptive Delta-Modulation Coding for Networked Controlled Systems, Proc. Amer. Contr. Conf. (ACC’07), New York: IEEE, 2007, July 11–13, pp. 4911–4916.Google Scholar
  108. 108.
    Fradkov, A.L., Andrievsky, B., and Peaucelle, D., Estimation and Control under Information Constraints for LAAS Helicopter Benchmark, IEEE Trans. Contr. Syst. Technol., 2010, September, vol. 18, no. 5, pp. 1180–1187.zbMATHGoogle Scholar
  109. 109.
    Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Passifiable Lurie Systems via Limited-Capacity Communication Channel, IEEE Trans. Circuit. Syst. I, 2009, vol. 56, no. 2, pp. 430–439.MathSciNetGoogle Scholar
  110. 110.
    Usik, E.V., Passification Based Synchronization of Cascade Lurie Systems with Quantized Signals, Proc. 2014 IEEE Conf. Control Appl. (CCA 2014), 2014, pp. 1964–1969.Google Scholar
  111. 111.
    Fradkov, A.L., Nijmeijer, H., and Markov, A., Adaptive Observer-Based Synchronization for Communication, Int. J. Bifurcat. Chaos, 2000, vol. 10, no. 12, pp. 2807–2813.zbMATHGoogle Scholar
  112. 112.
    Efimov, D. and Fradkov, A.L., Adaptive Tuning to Bifurcation for Time-Varying Nonlinear Systems, Automatica, 2006, vol. 42, pp. 417–425.MathSciNetzbMATHGoogle Scholar
  113. 113.
    Fradkov, A.L., Andrievsky, B., and Boykov, K.B., Multipendulum Mechatronic Setup: Design and Experiments, Mechatron., 2012, vol. 22, no. 1, pp. 76–82.Google Scholar
  114. 114.
    Fradkov, A.L., Andrievsky, B., and Ananyevskiy, M.S., State Estimation and Synchronization of Pendula Systems over Digital Communication Channels, Eur. Phys. J. Special Topics, 2014, vol. 223, pp. 773–793.Google Scholar
  115. 115.
    Andrievsky, B. and Andrievsky, A., Experimental Evaluation of Synchronization-based Data Transmission Scheme for Multipendulum Setup, Cybernet. Phys., 2015, no. 1, pp. 5–10.Google Scholar
  116. 116.
    Andrievsky, B., Boikov, V.I., Fradkov, A.L., and Seifullaev, R.E., Mechatronic Laboratory Setup for Study of Controlled Nonlinear Vibrations, IFAC Proc. Vol. (IFAC-PapersOnline), 2016, vol. 49, no. 14, pp. 1–6, Proc. 6th IFAC Workshop on Periodic Control Syst. (PSYCO 2016), Eindhoven, The Netherlands, 2016, June 29–July01.Google Scholar
  117. 117.
    Chepak, L.V. and Mezentseva, A.V., Modeling an Adaptive-Robust System for a Scalar Plant with Control Delay, Vestn. Sarat. Gos. Tekhn. Univ., 2012, vol. 1, no. 2(64), pp. 188–193.Google Scholar
  118. 118.
    Bobtsov, A.A., Pyrkin, A.A., and Kolyubin, S.A., Simple Output Feedback Adaptive Control Based on Passification Principle, Int. J. Adaptive Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 620–632.MathSciNetzbMATHGoogle Scholar
  119. 119.
    Fradkov, A.L., Grigoriev, G., and Selivanov, A., Decentralized Adaptive Controller for Synchronization of Dynamical Networks with Delays and Bounded Disturbances, Proc. 50th IEEE Conf. Dec. Control (CDC 2011), Orlando, USA: IEEE, 2011, December 12–15, pp. 1110–1115.Google Scholar
  120. 120.
    Fradkov, A.L. and Grigor’ev, G.K., Decentralized Adaptive Control of Synchronization of Dynamic System Networks at Bounded Disturbances, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 829–844.MathSciNetzbMATHGoogle Scholar
  121. 121.
    Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 5, pp. 1615–1626.MathSciNetzbMATHGoogle Scholar
  122. 122.
    Selivanov, A., Fridman, E., and Fradkov, A.L., Passification-based Adaptive Control: Uncertain Input and Output Delays, Automatica, 2015, vol. 54, pp. 107–113.MathSciNetzbMATHGoogle Scholar
  123. 123.
    Liu, K., and Fridman, E., Delay-Dependent Methods and the First Delay Interval, Syst. Control Lett., 2014, vol. 64, pp. 57–63.MathSciNetzbMATHGoogle Scholar
  124. 124.
    Fridman, E. and Shaked, U., Delay-Dependent Stability and H-Infinity Control: Constant and Time-Varying Delays, Int. J. Control, 2003, vol. 76, no. 1, pp. 48–60.zbMATHGoogle Scholar
  125. 125.
    He, Y., Wang, Q.-G., Lin, C., and Wu, M., Delay-Range-Dependent Stability for Systems with Time-Varying Delay, Automatica, 2007, vol. 43, no. 2, pp. 371–376.MathSciNetzbMATHGoogle Scholar
  126. 126.
    Selivanov, A., Fradkov, A.L., and Fridman, E., Passification-Based Decentralized Adaptive Synchronization of Dynamical Networks with Time-Varying Delays, J. Franklin Inst., 2015, vol. 352, no. 1, pp. 52–72.MathSciNetzbMATHGoogle Scholar
  127. 127.
    Selivanov, A.A., Control over Synchronization of Networks with Nonlinearities and Delayed Connections, Vestn. Lobachevsk. Nizhn. Novgorod. Univ., 2013, no. 1(3), pp. 265–271. http://www.vestnik.unn.ru/ru/nomera?anum=6278 Google Scholar
  128. 128.
    Selivanov, A., Junussov, I.A., and Fradkov, A.L. Robust and Adaptive Passification Based Consensus Control of Dynamical Networks, 11th IFAC Int. Workshop Adapt. Learning Control Signal Proc., Amsterdam: Elsevier, 2013, pp. 707–711.Google Scholar
  129. 129.
    De Vries, G., Diffusively Coupled Bursters: Effects of Cell Heterogeneity, Bull. Math. Biology, 1999, vol. 61, no. 5, pp. 1017.zbMATHGoogle Scholar
  130. 130.
    Chow, C.C. and Kopell, N., Dynamics of Spiking Neurons with Electrical Coupling, Neural Comput., 2000, vol. 12, no. 7, pp. 1643–1678.Google Scholar
  131. 131.
    Fiedler, B., Handbook of Dynamical Systems, Amsterdam: Elsevier Science, 2002.zbMATHGoogle Scholar
  132. 132.
    Coombes, S., Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models, SIAM J. Appl. Dynam. Syst., 2008, vol. 7, no. 3, pp. 1101–1129.MathSciNetzbMATHGoogle Scholar
  133. 133.
    Wu, C.W. and Chua, L., Synchronization in an Array of Linearly Coupled Dynamical Systems, IEEE Trans. Circuit. Syst. I: Fundament. Theory Appl., 1995, vol. 42, no. 8, pp. 430–447.MathSciNetzbMATHGoogle Scholar
  134. 134.
    v.d. Steen, R. and Nijmeijer, H., Partial Synchronization of Diffusively Coupled Chua Systems: An Experimental Case Study, IFAC Conf. Anal. Control Chaotic Syst., 2006, pp. 1–6.Google Scholar
  135. 135.
    Rodriguez-Angeles, A. and Nijmeijer, H., Coordination of Two Robot Manipulators Based on Position Measurements Only, Int. J. Control, 2001, vol. 74, no. 13, pp. 1311–1323.MathSciNetzbMATHGoogle Scholar
  136. 136.
    Chung, S.-J. and Slotine, J.-J.E., Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems, IEEE Transact. Robot., 2009, vol. 25, no. 3, pp. 686–700.Google Scholar
  137. 137.
    Zanin, M., Buldu, J.M. and Boccaletti, S., Networks of Springs: A Practical Approach, Int. J. Bifurcat. Chaos, 2010, vol. 20, no. 3, pp. 937–942.zbMATHGoogle Scholar
  138. 138.
    Usik, E.V., Synchronization of Nonlinear Lurie Systems on the Basis of Passification and Backstepping, Autom. Remote Control, 2012, vol. 73, no. 8, pp. 1305–1315.MathSciNetzbMATHGoogle Scholar
  139. 139.
    Luzi, A.-R., Fradkov, A.L., Biannic, J.-M., and Peaucelle, D., Structured Adaptive Control for Solving LMIs, IFAC Proc. Vol. (IFAC-PapersOnline), 2013, vol. 46, no. 11, pp. 426–431, Proc. 11th IFAC Int. Workshop Adaptat. Learning in Control Signal Proc., July 3–5, 2013, Caen, France.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.ITMO University (National Research University of Information Technologies, Mechanics and Optics)St. PetersburgRussia
  4. 4.Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations