Automation and Remote Control

, Volume 79, Issue 4, pp 641–654 | Cite as

Optimal Management of Oil Field Development in the Buckley–Leverett Model

  • A. V. Akhmetzianov
  • A. G. Kushner
  • V. V. Lychagin
Control in Technical Systems
  • 1 Downloads

Abstract

We consider the problem of two-phase filtering (oil and water) in a horizontal layer of an oil deposit. We propose an asymptotic method for calculating both the filtering process and related optimal control problems, namely the problems of choosing optimal control actions to achieve maximum oil production at a given level of water resource consumption or a minimum water flow rate that provides the level of oil production required by the plan.

Keywords

filtering asymptotics optimal control probabilistic methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, Kh. and Settari, A., Petroleum Reservoir Simulation, London: Applied Science Publishers, 1979. Translated under the title Matematicheskoe modelirovanie plastovykh sistem, Moscow: Inst. Komp’yut. Issled., 2004.Google Scholar
  2. 2.
    Samarskii, A.A., Koldoba, A.V., Poveshchenko, Yu.A., Tishkin, V.F., and Favorskii, A.P., Raznostnye skhemy na neregulyarnykh setkakh (Difference Schemes on Irregular Grids), Minsk: ZAO “Kriterii,” 1996.Google Scholar
  3. 3.
    Akhmetzianov, A.V., Kushner, A.G., and Lychagin, V.V., Nonlinear Models of Oil Frontal Displacement and Shock Waves, in 7th IFAC Conf. on Manufacturing Modelling, Management, and Control, 2013, pp. 1170–1175.Google Scholar
  4. 4.
    Tychkov, S.N., Travelling Wave Solution of the Buckley–Leverett Equation, Anal. Math. Phys., 2017, vol. 7, no. 4, pp. 449–458. https://link.springer.com/article/10.1007/s13324-016-0152-6MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bibikov, P.V., Group Classification of Rapoport-Leas Equations, Lobachevskii J. Math., 2017, vol. 38, no. 1, pp. 116–124.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buckley, S.E. and Leverett, M.C., Mechanism of Fluid Displacement in Sands, Trans. AIME, SPE, 1942, vol. 146, pp. 107–116.CrossRefGoogle Scholar
  7. 7.
    Akhmetzianov, A.V., Kushner, A.G., and Lychagin, V.V., Mass and Heat Transport in Two-phase Buckley–Leverett’s Model, J. Geometry Phys., 2016, vol. 113, pp. 2–9.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., Theory of Fluid Flows through Natural Rocks, London: Kluwer, 2010.MATHGoogle Scholar
  9. 9.
    Akhmetzianov, A.V., Kushner, A.G., and Lychagin, V.V., Long-time Asymptotics for the Buckley–Leverett Models of Development of Oil and Gas Fields, in Proc. Conf. Application of Information and Communication Technologies, AICT 2017, Moscow, 20–22 September, 2017, pp. 505–507.Google Scholar
  10. 10.
    Kantorovich, L.V. and Krylov, V.I., Priblizhennye metody vysshego analiza (Approximate Methods of Higher Analysis), Moscow: Fizmatlit, 1962.MATHGoogle Scholar
  11. 11.
    Fejer, L., Uber Trigonometrische Polynome, J. Reine Angew. Math., 1916, vol. 146, pp. 53–82.MathSciNetMATHGoogle Scholar
  12. 12.
    Riesz, F. and Szókefalvi-Nagy, B., Functional Analysis, New York: Dover, 1952. Translated under the title Lektsii po funktsional’nomu analizu, Moscow: Mir, 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Akhmetzianov
    • 1
  • A. G. Kushner
    • 1
    • 2
  • V. V. Lychagin
    • 1
    • 3
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov State UniversityMoscowRussia
  3. 3.Arctic University of NorwayTromsoNorway

Personalised recommendations