Advertisement

Automation and Remote Control

, Volume 79, Issue 2, pp 258–264 | Cite as

A Method to Provide Conditions for Sustained Excitation

  • Jian Wang
  • S. V. Aranovskiy
  • A. A. Bobtsov
  • A. A. Pyrkin
  • S. A. Kolyubin
Linear Systems

Abstract

For the linear regression model, the problem of relaxing conditions for sustained excitation in the problems of estimation of the unknown constant parameters of the model was discussed. An approach was suggested enabling one to form from a damped regressor a new signal for which the conditions of sustained excitation are satisfied. The cases of one and two unknown parameters giving one an insight into the root idea of the proposed approach were analyzed in detail. Operability of the algorithms considered in the paper was illustrated by computer-aided modeling.

Keywords

system identification condition for sustained excitation estimate conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aranovskiy, S.V., Bobtsov, A.A., and Pyrkin, A.A., Cascaded Reduction in the Problems of Identification, Nauchn.-Tekhn. Vestn. Inf. Tekhnol., Mekh., Opt., 2012, no. 3, pp. 149–150.Google Scholar
  2. 2.
    Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.zbMATHGoogle Scholar
  3. 3.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complicated Dynamic Systems), St. Petersburg: Nauka, 2000.zbMATHGoogle Scholar
  4. 4.
    Andrievskii, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of the Automatic Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 1999.zbMATHGoogle Scholar
  5. 5.
    Sastry, S. and Bodson, M., Adaptive Control: Stability, Convergence and Robustness, Mineola: Dover, 2011.zbMATHGoogle Scholar
  6. 6.
    Aranovskiy, S., Bobtsov, A., Ortega, R., et al., Parameters Estimation via Dynamic Regressor Extension and Mixing, Am. Control Conf., 2016.Google Scholar
  7. 7.
    Chowdhary, G. and Johnson, E., Concurrent Learning for Convergence in Adaptive Control without Persistency of Excitation, 49th IEEE Conf. Decision Control, 2010, pp. 3674–3679.Google Scholar
  8. 8.
    Pan, Y. and Yu, H., Composite Learning from Adaptive Dynamic Surface Control, IEEE Trans. Automat. Control, 2016, vol. 61, no. 9, pp. 2603–2609.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Narendra, K.S. and Annaswamy, A.M., Stable Adaptive Systems, New York: Courier Corporation, 2012.zbMATHGoogle Scholar
  10. 10.
    Andrieu, V. and Praly, L., On the Existence of a Kazantzis–Kravaris/ Luenberger Observer, SIAM J. Control Optim., 2006, vol. 45, no. 2, pp. 432–456.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kazantzis, N. and Kravaris, C., Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem, Syst. Control Lett., 1998, vol. 34, no. 5, pp. 241–247.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Anderson, B.D.O., Bitmead, R.R., Johnson, C.R., et al., Stability of Adaptive Systems: Passivity and Averaging Analysis, Cambridge: MIT Press, 1986.zbMATHGoogle Scholar
  13. 13.
    Aranovskiy, S., Bobtsov, A., Ortega, R., et al., Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing, IEEE Trans. Automat. Control, 2017, vol. 62, no. 7, pp. 3546–3550.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, J., Gritsenko, P.A., Aranovskiy, S.V., et al., A Method for Increasing the Rate of Parametric Convergence in the Problem of Identification of the Sinusoidal Signal Parameters, Autom. Remote Control, 2017, vol. 78. no. 3, pp. 389–396.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Jian Wang
    • 1
  • S. V. Aranovskiy
    • 2
  • A. A. Bobtsov
    • 2
  • A. A. Pyrkin
    • 2
  • S. A. Kolyubin
    • 2
  1. 1.Hangzhou Dianzi UniversityHangzhouChina
  2. 2.ITMO University (National Research University of Information Technologies, Mechanics and Optics)St. PetersburgRussia

Personalised recommendations