Automation and Remote Control

, Volume 78, Issue 5, pp 826–835 | Cite as

Algorithm to control linear plants with measurable quantized output

Robust and Adaptive Systems

Abstract

Consideration was given to the control of linear plants under external perturbations and measurement of the quantized plant output. The “consecutive compensator” method was used to design the controller. The obtained algorithm tracks the quantized plant output with respect to the reference signal with precision depending on the quantization step. The simulations illustrate the efficiency of the proposed scheme.

Keywords

control under uncertainty consecutive compensator quantized measurement of signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Widrow, B., Statistical Analysis of Amplitude-Quantized Sampled-Data Systems, Trans. AIEE, 1961, vol. 79, no. 2, pp. 555–567.Google Scholar
  2. 2.
    Gray, R.M. and Neuhoff, D.L., Quantization, IEEE Trans. Inf. Theory, 1988, vol. 44, pp. 2325–2383.CrossRefMATHGoogle Scholar
  3. 3.
    Delchamps, D.F., Extracting State Information from a Quantized Output Record, Syst. Control Lett., 1989, vol. 13, pp. 365–372.CrossRefMATHGoogle Scholar
  4. 4.
    Baillieul, J., Feedback Coding for Information-Based Control: Operating Near the Data Rate Limit, in Proc. 41st IEEE Conf. Decision Control, ThP02-6, Las Vegas, Nevada, USA, 2002, pp. 3229–3236.Google Scholar
  5. 5.
    Tou, J.T., Optimum Design of Digital Control Systems, New York: Academic, 1963.MATHGoogle Scholar
  6. 6.
    Lewis, J.B. and Tou, J.T., Optimum Sampled-Data Systems with Quantized Control Signals, Trans. AIEE, 1965, vol. 82, no. 2, pp. 195–201.Google Scholar
  7. 7.
    Larson, R.E., Optimum Quantization in Dynamic Systems, IEEE Trans. Autom. Control, 1967, vol. 12, pp. 162–168.CrossRefGoogle Scholar
  8. 8.
    Golding, L.S. and Schultheiss, P.M., Study of an Adaptive Quantizer, Proc. IEEE, 1967, vol. 55, no. 3, pp. 293–297.CrossRefGoogle Scholar
  9. 9.
    Goodman, D.J. and Gersho, A., Theory of an Adaptive Quantizer, IEEE Trans. Commun., 1974, vol. COM-22, no. 8, pp. 1037–1045.CrossRefGoogle Scholar
  10. 10.
    Zhang, S.D. and Lockhart, G.B., Design and Simulation of an Efficient Adaptive Delta Modulation Embedded Coder, IEE Proc. Vis. Image Signal Process., 1995, vol. 142, no. 3, pp. 155–160.CrossRefGoogle Scholar
  11. 11.
    Zierhofer, C.M., Adaptive Sigma-Delta Modulation with One-Bit Quantization, IEEE Trans. Circuits Syst. II, 2000, vol. 47, no. 5, pp. 408–415.CrossRefGoogle Scholar
  12. 12.
    Venayagamoorthy, G.K. and Zha, W., Comparison of Nonuniform Optimal Quantizer Designs for Speech Coding with Adaptive Critics and Particle Swarm, IEEE Trans. Industry, 2007, vol. 43, no. 1, pp. 238–244.CrossRefGoogle Scholar
  13. 13.
    Gomez-Estern, F., Canudas de Wit, C., Rubio, F., et al., Adaptive Delta-Modulation Coding for Networked Controlled Systems, in Proc. Am. Control. Conf., New York, USA, 2007.Google Scholar
  14. 14.
    Andrievsky, B., Fradkov, A.L., and Peaucelle, D., State Estimation over the Limited-band Communication Channel for Pitch Motion Control of LAAS Helicopter Benchmark, in Proc. 17th IFAC Symp. Automat. Control. Aerospace (ACA’2007), Toulouse, France, 2007.Google Scholar
  15. 15.
    Zheng, J., Duni, E.R., and Rao, B.D., Analysis of Multiple-Antenna Systems with Finite-Rate Feedback Using High-Resolution Quantization Theory, IEEE Trans. Signal Process., 2007, vol. 55, no. 4, pp. 1461–1475.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liberzon, D., Hybrid Feedback Stabilization of Systems with Quantized Signals, Automatica, 2003, vol. 39, pp. 1543–1554.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Autom. Control, 2000, vol. 45, pp. 1279–1289.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sharon, Y. and Liberzon, D., Input to State Stabilizing Controller for Systems with Coarse Quantization, IEEE Trans. Autom. Control, 2012, vol. 57, no. 4, pp. 830–844.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tsykunov, A.M., Robastnoe upravlenie s kompensatsiei vozmushchenii (Robust Control with Compensation of Perturbations), Moscow: Fizmatlit, 2012.Google Scholar
  20. 20.
    Furtat, I.B., Fradkov, A.L., and Liberzon, D., Robust Control with Compensation of Disturbances for Systems with Quantized Output, in Proc. 19th World Cong. Int. Federation of Automatic Control, Cape Town, South Africa, August 24–29, 2014, pp. 730–735.Google Scholar
  21. 21.
    Bobtsov, A.A., Robust Output-Control for a Linear System with Uncertain Coefficients, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1794–1802.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wu, W., DC Motor Parameter Identification Using Speed Step Responses, in Proc. 2010 Am. Control Conf., Baltimore, USA, 2010, pp. 1937–1941.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Margun
    • 1
  • A. A. Bobtsov
    • 1
    • 2
  • I. B. Furtat
    • 1
    • 3
  1. 1.ITMO University (National Research University of Information Technologies, Mechanics and Optics)St. PetersburgRussia
  2. 2.Hangzhou Dianzi UniversityHangzhouChina
  3. 3.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt.PetersburgRussia

Personalised recommendations