Automation and Remote Control

, Volume 78, Issue 2, pp 276–288 | Cite as

Control for a system of linear agents based on a high order adaptation algorithm

  • S. I. Tomashevich
Control in Social Economic Systems, Medicine, and Biology


We solve the problem of synchronizing a network of linear agents with unknown parameters and unknown network topology given that the Laplacian that defines it has no complex eigenvalues. To solve this problem, we use a modified high order adaptation algorithm. We obtain conditions for reaching consensus with the proposed algorithm. We show modeling results that demonstrate the efficiency of the proposed approach.


multiagent systems Laplacian decentralized control matrix of connections adaptation algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amelina, N.O., Anan’evskii, M.S., Andrievskii, B.R., et al., Problemy setevogo upravleniya (Network Control Problems), Fradkov, A.L., Ed., Moscow–Izhevsk: Izhevsk. Inst. Comp. Issled., 2015.Google Scholar
  2. 2.
    Cheng, Z., Zhang, H.-T., and Fan, M.-C., Consensus and Rendezvous Predictive Control for Multi-agent Systems with Input Constraints, 33rd Chinese Control Conf. (CCC), 2014, pp. 1438–1443.Google Scholar
  3. 3.
    Wu, Z., Guan, Z., Wu, X., and Li, T., Consensus Based Formation Control and Trajectory Tracing of Multi-Agent Robot Systems, J. Intelligent Robot. Syst., 2007, vol. 48, no. 3, pp. 397–410.CrossRefGoogle Scholar
  4. 4.
    Amelina, N., Fradkov, A., Jiang, Y., and Vergados, D.J., Approximate Consesus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Leonard, N.E. and Fiorelli, E., Virtual Leaders, Artificial Potentials, and Coordinated Control of Groups, Proc. 40 IEEE Conf. Decision Control, 2001, pp. 2968–2973.Google Scholar
  6. 6.
    Amelina, N.O., Multiagent Technologies, Adaptation, Self-Organization, and Reaching Consensus, Stokhast. Optim. Informat., 2011, vol. 7, no. 1, pp. 149–185.Google Scholar
  7. 7.
    Olfati-Saber, R. and Murray, R., Consensus Problems in Networks of Agents with Switching Topology and Time-Delays, IEEE Trans. Autom. Control, 2004, vol. 49, no. 9, pp. 1520–1533.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ren, W. and Beard, R.W., Distributed Consensus in Multi-vehicle Cooperative Control, London: Springer-Verlag, 2008.CrossRefzbMATHGoogle Scholar
  9. 9.
    Olfati-Saber, R., Fax, A., and Murray, R., Consensus and Cooperation in Networked Multi-agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.CrossRefGoogle Scholar
  10. 10.
    Agaev, R.P. and Chebotarev, P.Yu., Coordination in Multiagent Systems and Laplacian Spectra of Digraphs, Autom. Remote Control, 2009, vol. 70, no. 3, pp. 469–483.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fradkov, A.L., Kiberneticheskaya fizika (Cybernetic Physics), St. Petersburg: Nauka, 2003.Google Scholar
  12. 12.
    Gazis, D.C., Herman, R., and Rothery, R.W., Nonlinear Follow-the-Leader Models of Traffic Flow Operations Research, INFORMS, 1961, no. 9, pp. 545–567.zbMATHGoogle Scholar
  13. 13.
    Chandler, R.E., Herman, R., and Montroll, E.W., Traffic Dynamics: Studies in Car Following, Oper. Res. Informs., 1958, no. 6, pp. 165–184.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Newell, G.F., Nonlinear Effects in the Dynamics of Car Following, Oper. Res., 1961, vol. 9, no. 2, pp. 209–229.CrossRefzbMATHGoogle Scholar
  15. 15.
    Agaev, R.P. and Chebotarev, P.Yu., The Matrix of Maximal Outgoing Forests of a Digraph and Its Applications, Autom. Remote Control, 2000, vol. 61, no. 9, pp. 1424–1450.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Agaev, R.P. and Chebotarev, P.Yu., Spanning Forests of a Digraph and Their Applications, Autom. Remote Control, 2001, vol. 62, no. 3, pp. 443–466.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fax, J.A. and Murray, R.M., Information Flow and Cooperative Control of Vehicle Formations, IEEE Trans. Autom. Control, 2004, no. 8, pp. 1465–1476.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Proskurnikov, A.V., The Popov Criterion for Consensus Between Delayed Agents, Proc. 9 IFAC Nonlinear Control Syst. Sympos. NOLCOS-2013, Toulouse, France, pp. 693–698.Google Scholar
  19. 19.
    Li, Z., Duan, Z., and Chen, G., Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint, IEEE Transact. Circuits Systems I, Regular Papers, 2010, no. 1, pp. 213–224.MathSciNetGoogle Scholar
  20. 20.
    Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform System, Autom. Remote Control, 1996, vol. 57, no. 11, pp. 1606–1617.zbMATHGoogle Scholar
  21. 21.
    Hara, S., Shimizu, H., and Kim, T.-H., Consensus in Hierarchical Multi-agent Dynamical Systems with Low-rank Interconnections: Analysis of Stability and Convergence Rates, Am. Control Conf., 2009, pp. 5192–5197.Google Scholar
  22. 22.
    Proskurnikov, A.V., Frequency-Domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Godsil, C. and Royle, G., Algebraic Graph Theory, New York: Springer-Verlag, 2001.CrossRefzbMATHGoogle Scholar
  24. 24.
    Tomashevich, S. and Andrievsky, B., Stability and Performance of Networked Control of Quadrocopters Formation Flight, Proc. 6 Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT 2014), St. Petersburg, Russia, 2014, pp. 331–336.Google Scholar
  25. 25.
    Furtat, I.B., Adaptive Control for a Dynamic Network with Linear Subsystems, Vestn. Astrakhan. Gos. Tekh. Univ., Ser. Upravlen., Vychisl. Tekh. Informatika, 2012, no. 1, pp. 69–78.Google Scholar
  26. 26.
    Chen, Y. and Yuping Tian, Y., Cooperative Control of Multi-agent Moving Along a Set of Given Curves, J. Syst. Sci. Complex., 2011, vol. 24, pp. 631–646.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Selivanov, A., Fradkov, A.L., and Junessov, I., Robust and Adaptive Passification Based Consensus Control of Dynamical Networks, IFAC Int. Workshop Adapt. Learn. Control Signal Proc., 2013, pp. 707–711.Google Scholar
  28. 28.
    Parsegov, S.E., Joining Coordinates and Hierarchical Algorithms in the Problem of Equidistant Location of Agents on a Segment, Upravlen. Bol’shimi Sist., 2012, no. 39, pp. 264–287.Google Scholar
  29. 29.
    Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Furtat, I.B., Consensus Output Control for a Linear Dynamical Network with Disturbance Compensation, Mekhatronika, Avtomatiz., Upravlen., 2011, no. 4, pp. 12–18.Google Scholar
  31. 31.
    Li, Z., Ren, W., Liu, X., and Fu, M., Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols, IEEE Transact. Automat. Control, 2012, vol. 58, no. 7, pp. 1786–1791.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, Z., Liu, X., Ren, W., and Xie, L., Distributed Consensus of Linear Multi-Agent Systems with Adaptive Dynamic Protocols, Automatica, 2013, vol. 49, no. 7, pp. 1986–1995.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Selivanov, A.A., Control over Synchronization of Networks with Nonlinearities and Delayed Connections, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2014, no. 1 (3), pp. 265–271.Google Scholar
  34. 34.
    Hara, S. and Tsubakino, D., Eigenvector-Based Intergroup Connection of Low Rank for Hierarchical Multi-agent Dynamical Systems, Syst. Control Lett., 2012, vol. 61, no. 2, pp. 354–361.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Morse, A.S., High-order Parameter Tuners for the Adaptive Control of Nonlinear Systems, in Systems, Models and Feedback: Theory Appl., Isidori, A. and Tarn, T.J., Eds., Basel: Birkhauser, 1992, pp. 339–364.CrossRefGoogle Scholar
  36. 36.
    Tsykunov, A.M., A Modified High-order Adaptive Output Feedback Control Algorithm for Linear Plants, Autom. Remote Control, 2006, vol. 67, no. 8, pp. 1311–1321.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.Google Scholar
  38. 38.
    Nikiforov, V.O. and Fradkov, A.L., Adaptive Control Schemes with Extended Error, Autom. Remote Control, 1994, vol. 55, no. 9, pp. 1239–1255.MathSciNetzbMATHGoogle Scholar
  39. 39.
    Chung, F.R.K., Spectral Graph Theory, Ser. Regional Conference Series in Mathematics, Providence: Am. Math. Soc., 1997, vol. 92.Google Scholar
  40. 40.
    Tomashevich, S.I., Stability of Multiagent Linear Scalar Systems and Its Dependence on the Graph of Connections, Nauch.-tekhn. Vestn. Inform. Tekhnol., Mekh. Optiki, 2014, vol. 14, no. 2, pp. 72–78.Google Scholar
  41. 41.
    Furtat, I.B. and Tsykunov, A.M., A Modified Algorithm of High Order Adaptation for Systems with State Delay, Vestn. Astrakhan. Gos. Tekh. Univ., 2006, no. 1, pp. 24–33.Google Scholar
  42. 42.
    Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Autom. Control, 1999, vol. 44, no. 9, pp. 1672–1687.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Fax, J.A., Optimal and Cooperative Control of Vehicle Formations, PhD Dissertation, California Inst. Technol., Pasadena, CA, 2002, pp. 55–58.Google Scholar
  44. 44.
    Amelin, K., Tomashevich, S., and Andrievsky, B., Recursive Identification of Motion Model Parameters for Ultralight UAV, IFAC-PapersOnLine 1st IFAC Conf. Modell., Identificat. Control Nonlin. Syst. (MICNON 2015), Russia, St. Petersburg, 2015, vol. 48, no. 11, pp. 233–237.Google Scholar
  45. 45.
    Fradkov, A.L. and Furtat, I.B., Robust Control for a Network of Electric Power Generators, Autom. Remote Control, 2013, vol. 74, no. 11, pp. 18851–1862.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Furtat, I.B. and Fradkov, A.L., Robust Control of Multi-Machine Power Systems with Compensation of Disturbances, Electr. Power Energy Syst., 2015, no. 73, pp. 584–590.CrossRefGoogle Scholar
  47. 47.
    Furtat, I.B., Robust Control for a Certain Class of Nonminimally–Phase Dynamical Networks, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2014, no. 1, pp. 35–48.MathSciNetGoogle Scholar
  48. 48.
    Brusin, V.A., On a Class of Singular Perturbed Adaptive Systems, Autom. Remote Control, 1995, vol. 56, no. 4, pp. 552–559.MathSciNetzbMATHGoogle Scholar
  49. 49.
    Furtat, I.B. and Tsykunov, A.M., Adaptive Control of Plants of Unknown Relative Degree, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1076–1084.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringSt. PetersburgRussia

Personalised recommendations