Automation and Remote Control

, Volume 77, Issue 10, pp 1711–1740 | Cite as

Problems and methods of network control

Reviews

Abstract

Control of network systems, or network control, is a rapidly developing field of modern automated control theory. Network control is characterized by a combination of the classical control theory toolbox (linear systems, nonlinear control, robust control and so on) and conceptually new mathematical ideas that come primarily from graph theory. Methods of network control let one solve analysis and synthesis problems for complex systems that arise in physics, biology, economics, sociology, and engineering sciences. In this survey, we present the main fields of application for modern theory of network control and formulate its key results obtained over the last decade.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R. and Barabasi, A.-L., Statistical Mechanics of Complex Networks, Rev. Mod. Phys., 2002, vol. 74, pp. 47–97.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Fax, J.A. and Murray, R.M., Information Flow and Cooperative Control of Vehicle Formations, IEEE Trans. Autom. Control, 2004, vol. 49, no. 9, pp. 1465–1476.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Olfati-Saber, R. and Murray, R.M., Consensus Problems in Networks of Agents with Switching Topology and Time-Delays, IEEE Trans. Autom. Control, 2004, vol. 49, no. 9, pp. 1520–1533.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Olfati-Saber, R., Fax, J.A., and Murray, R.M., Consensus and Cooperation in Networked Multi-Agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.CrossRefGoogle Scholar
  5. 5.
    IEEE Control Syst. Mag., Special Section “Complex Networked Control Systems,” Aug. 2007.Google Scholar
  6. 6.
    IEEE Trans. Automatic Control, “Special Issue on Networked Control Systems,” Sept., 2004.Google Scholar
  7. 7.
    Proc. IEEE, Special Issue on Networked Control Systems Technology, January 2007.Google Scholar
  8. 8.
    Physica D: Nonlinear Phenomena, Special Issue Evolving Dynam. Networks, Belykh, I., di Bernardo, M., Kurths, J., and Porfiri, M., Eds., 2014, vol. 267Google Scholar
  9. 9.
    IFAC Workshops Distributed Estimat. Control Networked Syst., NecSys’09, 24–26 Sept., 2009, Venice, Italy; NecSys’10, 13–14 Sept., 2010, Grenoble, France; NecSys’11, 14–15 Sept., 2012, Santa Barbara, California; NecSys’13, 25–26 Sept., 2013, Koblenz, Germany; NecSys’15, 10–11 Sept., 2015, Philadelphia, USA.Google Scholar
  10. 10.
    Tsypkin, Ya.Z., Adaptatsiya i obuchenie v avtomaticheskikh sistemakh (Adaptation and Learning in Automated Systems), Moscow: Nauka, 1968.Google Scholar
  11. 11.
    Andrievskii, B.R., Matveev, A.S., and Fradkov, A.S., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hespanha, J.P., Naghshtabrizi, P., and Xu, Y., A Survey of Recent Results in Networked Control Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 138–162.CrossRefGoogle Scholar
  13. 13.
    Matveev, A.S. and Savkin, A.V., Estimation and Control over Communication Networks, Boston: Birkhäuser, 2009.MATHGoogle Scholar
  14. 14.
    Ren, W. and Cao, W., Distributed Coordination of Multi-Agent Networks, London: Springer-Verlag, 2011.MATHCrossRefGoogle Scholar
  15. 15.
    Sarlette, A., Sepulchre, R., and Leonard, N., Autonomous Rigid Body Attitude Synchronization, Automatica, 2009, vol. 45, no. 2, pp. 572–577.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Egerstedt, M., Hu, X., and Stotsky, A., Control of Mobile Platforms Using a Virtual Vehicle Approach, IEEE Trans. Autom. Control, 2001, vol. 46, no. 11, pp. 1777–1782.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Olfati-Saber, R., Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory, IEEE Trans. Autom. Control, 2006, vol. 51, no. 3, pp. 401–420.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tanner, H.G., Jadbabaie, A., and Pappas, G.J., Flocking in Fixed and Switching Networks, IEEE Trans. Autom. Control, 2007, vol. 52, no. 5, pp. 863–868.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, W., Stability Analysis of Swarms with General Topology, IEEE Trans. Syst., Man, Cybern., B, 2008, vol. 38, no. 4, pp. 1084–1097.CrossRefGoogle Scholar
  20. 20.
    Lin, J., Morse, A.S., and Anderson, B.D.O., The Multi-Agent Rendezvous Problem (in 2 parts), SIAM J. Control Optim., 2007, vol. 46, no. 6, pp. 2096–2147.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Cortes, J., Martinez, S., and Bullo, F., Robust Rendezvous for Mobile Autonomous Agents via Proximity Graphs in Arbitrary Dimensions, IEEE Trans. Autom. Control, 2006, vol. 51, no. 8, pp. 1289–1298.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Martinez, S., Bullo, F., Cortes, J., and Frazzoli, E., On Synchronous Robotic Networks (in 2 parts), IEEE Trans. Autom. Control, 2007, vol. 52, no. 12, pp. 2199–2226.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ren, W., Formation Keeping and Attitude Alignment for Multiple Spacecraft Through Local Interactions, J. Guid. Control Dynam., 2007, vol. 30, no. 2, pp. 633–638.CrossRefGoogle Scholar
  24. 24.
    Li, Z., Duan, Z., Chen, G., and Huang, L., Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint, IEEE Trans. Circuits Syst., I, 2010, vol. 57, no. 1, pp. 213–224.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fradkov, A.L., Kiberneticheskaya fizika (Cybernetic Physics), St. Petersburg: Nauka, 2003.Google Scholar
  26. 26.
    Blekhman, I.I. and Fradkov, A.L., On General Definitions of Synchronization, in Selected Topics in Vibrational Mechanics, Singapore: World Scientific, 2004, pp. 179–188.CrossRefGoogle Scholar
  27. 27.
    Ren, W. and Beard, R., Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications, London: Springer-Verlag, 2008.MATHCrossRefGoogle Scholar
  28. 28.
    Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in Characteristic Coordination Problems, Upravlen. Bol’shimi Sist., 2010, no. 30.1, pp. 470–505.Google Scholar
  29. 29.
    Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Fradkov, A.L., Junussov, I., and Ortega, R., Decentralized Adaptive Synchronization in Nonlinear Dynamical Networks with Nonidentical Nodes, IEEE Multiconf. Syst. Control (MSC 2009), St. Petersburg, Russia, 2009, pp. 531–536.Google Scholar
  31. 31.
    Fradkov, A.L. and Junussov, I., Output Feedback Synchronization for Networks of Linear Agents, Eur. Nonlinear Dynam. Conf. (ENOC 2011), Rome, Italy, 2011.Google Scholar
  32. 32.
    Fradkov, A.L. and Junussov, I.A., Synchronization of Networks of Linear Systems by Static Output Feedback, IEEE Conf. Decision Control (CDC 2011), Orlando, USA, 2011, pp. 8188–8192.Google Scholar
  33. 33.
    Fradkov, A.L., Grigoriev, G.K., and Selivanov, A.A., Decentralized Adaptive Controller for Synchronization of Dynamical Networks with Delays and Bounded Disturbances, IEEE Conf. Decision Control (CDC 2011), Orlando, USA, 2011, pp. 1110–1115.Google Scholar
  34. 34.
    Selivanov, A.A., Fradkov, A.L., and Fridman, E., Adaptive Synchronization of Networks with Delays under Incomplete Control and Incomplete Measurements, 18 IFAC World Congr. Autom. Control, Milan, Italy, 2011, pp. 1249–1254.Google Scholar
  35. 35.
    Moyne, J.R. and Tilbury, D.M., The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data, Proc. IEEE, 2007, vol. 95, no. 1, pp. 29–47.CrossRefGoogle Scholar
  36. 36.
    Coe, N.M., Dicken, P., and Hess, M., Global Production Networks: Realizing the Potential, J. Econom. Geograph., 2008, vol. 8, no. 3, pp. 271–295.CrossRefGoogle Scholar
  37. 37.
    Jiao, J.X., You, X., and Kumar, A., An Agent-Based Framework for Collaborative Negotiation in the Global Manufacturing Supply Chain Network, Robot. Comput. Integrat. Manufactur., 2006, vol. 22, no. 3, pp. 239–255.CrossRefGoogle Scholar
  38. 38.
    Garlaschelli, D. and Loffredo, M., Structure and Evolution of the World Trade Network, Phys. A, 2006, vol. 355, no. 1, pp. 138–144.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Garlaschelli, D. and Loffredo, M., Effects of Network Topology on Wealth Distributions, J. Phys. A, 2004, vol. 41, no. 22, pp. 224018.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Easley, D. and Kleinberg, J., Networks, Crowds and Markets. Reasoning about a Highly Connected World, Cambridge: Cambridge Univ. Press, 2010.MATHCrossRefGoogle Scholar
  41. 41.
    Mesbahi, M. and Egerstedt, M., Graph Theoretic Methods in Multiagent Networks, Princeton: Princeton Univ. Press, 2010.MATHCrossRefGoogle Scholar
  42. 42.
    Kalyaev, I.A., Organization Principles for Decentralized Control Systems for Collectives of Microrobots, Mekhatronika, 2000, no.6.Google Scholar
  43. 43.
    Kalyaev, I.A., Gaiduk, A.R., and Kapustyan, S.G., Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov (Collective Control Models and Algorithms in Groups of Robots), Moscow: Fizmatlit, 2009.Google Scholar
  44. 44.
    Bullo, F., Cortes, J., and Martinez, S., Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms, Princeton: Princeton Univ. Press, 2009.MATHCrossRefGoogle Scholar
  45. 45.
    Lewis, F.L., Zhang, H., Hengster-Movric, K., and Das, A., Cooperative Control of Multi-Agent Systems: Optimal Design and Adaptive Control, Berlin: Springer-Verlag, 2014.MATHCrossRefGoogle Scholar
  46. 46.
    Abdessameud, A. and Tayebi, A., Motion Coordination for VTOL Unmanned Aerial Vehicles, Berlin: Springer-Verlag, 2013.MATHCrossRefGoogle Scholar
  47. 47.
    D’Andrea, R., Acrobatic Flight (Plenary Lecture), IEEE Conf. Decision Control (CDC 2013), Florence, Italy, 2013.Google Scholar
  48. 48.
    D’Andrea, R., The Astounding Athletic Power of Quadcopters, https://www.ted.com/talks/raffaello d andrea the astounding athletic power of quadcopters.Google Scholar
  49. 49.
    Augugliaro, F., Schoellig, A., and D’Andrea, R., Dance of the Flying Machines, IEEE Robot. Autom. Mag., 2013, vol. 20, no. 4, pp. 96–104.CrossRefGoogle Scholar
  50. 50.
    Hoy, M., Matveev, A., and Savkin, A.V., Algorithms for Collision-Free Navigation of Mobile Robots in Complex Cluttered Environments: A Survey, Robotica, 2015, vol. 33, no. 3, pp. 463–497.CrossRefGoogle Scholar
  51. 51.
    Hill, D.J. and Chen, G., Power Systems as Dynamic Networks, IEEE Int. Symp. Circuits Syst., Kos, Greece, 2006, pp. 722–725.Google Scholar
  52. 52.
    Doerfler, F., Chertkov, M., and Bullo, F., Synchronization in Complex Oscillator Networks and Smart Grids, PNAS, 2013, vol. 110, no. 6, pp. 2005–2010.MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Butler, F., A Call to Order a Regulatory Perspective on the Smart Grid, IEEE Power Energy Mag., 2009, no. 2, pp. 16–93.CrossRefGoogle Scholar
  54. 54.
    Farhangi, H., The Path of the Smart Grid, IEEE Power Energy Mag., 2010, no. 1, pp. 18–28.CrossRefGoogle Scholar
  55. 55.
    Jackson, J., Improving Energy and Smart Grid Program Analysis with Agent-Based End-Use Forecasting Models, Energy Policy, 2010, vol. 38, pp. 3771–3780.CrossRefGoogle Scholar
  56. 56.
    Liserre, M., Sauter, T., and Hung, Y.J., Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics, IEEE Ind. Electron. Mag., 2010, vol. 4, no. 1, pp. 18–37.CrossRefGoogle Scholar
  57. 57.
    Dorofeev, V.V. and Makarov, A.A., Smart Grid as a New Quality of Russian Electrical Energy Networks, Energoekspert, 2009, no. 4, pp. 28–34.Google Scholar
  58. 58.
    Pchelkina, I.V. and Fradkov, A.L., Modeling the Control Process over Synchronization of a Multi-Machine Power System, Informat. Sist. Upravlen., 2012, no. 4, pp. 18–26.Google Scholar
  59. 59.
    Fradkov, A.L. and Furtat, I.B., Robust Control for a Network of Electric Power Generators, Autom. Remote Control, 2013, vol. 74, no. 11, pp. 1851–1862.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Furtat, I.B., Control over an Electric Power Network with Regard to its Topology, Mekhatronika, Avtomatiz., Upravlen., 2013, no. 4, pp. 33–38.Google Scholar
  61. 61.
    Furtat, I.B. and Fradkov, A.L., Robust Control of Multi-Machine Power Systems with Compensation of Disturbances, Int. J. Elect. Power Energy Syst., 2015, vol. 73, pp. 584–590.CrossRefGoogle Scholar
  62. 62.
    Kleinrock, L., Communication Nets: Stochastic Message Flow and Delay, New York: McGraw-Hill, 1964. Translated under the title Kommunikatsionnye seti: stokhasticheskie potoki i zaderzhki soobschenii, Moscow: Nauka, 1970.MATHGoogle Scholar
  63. 63.
    Baran, P., On Distributed Communication Networks, IEEE Trans. Commun. Syst., 1964, vol. 12, no. 1, pp. 1–9.CrossRefGoogle Scholar
  64. 64.
    Lindsey, W.C., Ghazvinian, F., Hagmann, W.G., et al., Network Synchronization, Proc. IEEE, 1985, vol. 73, no. 10, pp. 1445–1467.CrossRefGoogle Scholar
  65. 65.
    Schenato, L. and Fiorentin, F., Average TimeSynch: A Consensus-Based Protocol for Clock Synchronization in Wireless Sensor Networks, Automatica, 2011, vol. 47, no. 9, pp. 1878–1886.MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Carli, R. and Zampieri, S., Network Clock Synchronization Based on the Second-Order Linear Consensus Algorithm, IEEE Trans. Autom. Control, 2014, vol. 59, no. 2, pp. 409–422.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Shivaratri, N.G., Krueger, P., and Singhal, M., Load Distributing for Locally Distributed Systems, Computer, 1992, vol. 25 No. 12, pp. 33–44.CrossRefGoogle Scholar
  68. 68.
    Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Amelina, N., Fradkov, A., Jiang, Yu., and Vergados, D.J., Approximate Consensus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Williams, R.J. and Martinez, N.D., Simple Rules Yield Complex Food Webs, Nature, 2000, vol. 404, no. 9, pp. 180–183.CrossRefGoogle Scholar
  71. 71.
    Pchelkina, I.V. and Fradkov, A.L., Control of Oscillatory Behavior of Multispecies Populations, Ecologic. Model., 2012, vol. 227, pp. 1–6.CrossRefGoogle Scholar
  72. 72.
    Zeeman, E.C., Dynamics of the Evolution of Animal Conflicts, J. Theor. Biol., 1981, vol. 89, pp. 249–270.MathSciNetCrossRefGoogle Scholar
  73. 73.
    Weibull, J.W., Evolutionary Game Theory, Cambridge: MIT Press, 1995.MATHGoogle Scholar
  74. 74.
    Mirollo, R.E. and Strogatz, S.H., Synchronization of Pulse-Coupled Biological Oscillators, SIAM J. Appl. Math., 1990, vol. 50, no. 6, pp. 1645–1662.MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Vasalou, C. and Henson, M.A., A Multicellular Model for Differential Regulation of Circadian Signals in the Shell and Core Regions of the SCN, J. Theor. Biol., 2011, vol. 288, pp. 44–56.CrossRefGoogle Scholar
  76. 76.
    Ovod, I.V., Osadchii, A.E., Pupyshev, A.A., and Fradkov, A.L., Forming a Neurofeedback Connection based on an Adaptive Model of Brain Acticity, Neirokomp’yutery, 2012, no. 2, pp. 36–41.Google Scholar
  77. 77.
    Hein, S.M., Schulze, F., Carmele, A., and Knorr, A., Entanglement Control in Quantum Networks by Quantum-Coherent Time-Delayed Feedback, Phys. Rev. A, 2015, no. 91, p. 052321.CrossRefGoogle Scholar
  78. 78.
    Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automated Control Systems), Moscow: Nauka, 1966.MATHGoogle Scholar
  79. 79.
    Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980.MATHCrossRefGoogle Scholar
  80. 80.
    Ray, W.H., Advanced Process Control, New York: McGraw Hill, 1980. Translated under the title Metody upravleniya tekhnologicheskimi protsessami, Moscow: Mir, 1983.Google Scholar
  81. 81.
    Sobolev, O.S., Metody issledovaniya lineinykh mnogosvyaznykh sistem (Methods for Studying Linear Multiconnected Systems), Moscow: Energiya, 1985.Google Scholar
  82. 82.
    Meerov, M.V., Issledovanie i optimizatsiya mnogosvyaznykh sistem upravleniya (Studies and Optimization of Multivariable Control Systems), Moscow: Nauka, 1986.MATHGoogle Scholar
  83. 83.
    Pogromsky, A., Santoboni, G., and Nijmeijer, H., Partial Synchronization: From Symmetry Towards Stability, Phys. D, 2002, vol. 172, pp. 65–87.MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Blekhman, I.I., Sinkhronizatsiya dinamicheskikh sistem (Synchronization of Dynamical Systems), Moscow: Nauka, 1971.MATHGoogle Scholar
  85. 85.
    Gurtovnik, A.S. and Neimark, Yu.I., On Synchronization in Dynamical Systems, Prikl. Mat. Mekh., 1974, vol. 38, no. 5, pp. 799–809.MathSciNetGoogle Scholar
  86. 86.
    Blekhman, I.I., Vibratsionnaya mekhanika (Vibrational Mechanics), Moscow: Nauka, 1994.Google Scholar
  87. 87.
    Lindsey, W.C., Synchronization Systems in Communication and Control, New York: Pearson Education, 1972.Google Scholar
  88. 88.
    Leonov, G.A. and Smirnova, V.B., Matematicheskie problemy teorii fazovoi sinkhronizatsii (Mathematical Problems of Phase Synchronization Theory), St. Petersburg: Nauka, 2000.Google Scholar
  89. 89.
    Afraimovich, V.S., Verichev, N.N., and Rabinovich, M.I., Stochastic Synchronization of Oscillations in Dissipative Systems, Izv. Vyssh. Uchebn. Zaved., Radiophys., 1986, vol. 29, no. 9, pp. 1050–1060.MathSciNetGoogle Scholar
  90. 90.
    Pecora, L.M. and Carroll, T.L., Synchronization in Chaotic Systems, Phys. Rev. Lett., 1990, vol. 64, pp. 821–823.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Rulkov, N.F., Sushchik, M., Tsimring, L.S., and Abarbanel, H.D.I., Generalized Synchronization of Chaos, Phys. Rev. E, 1995, vol. 51, pp. 980.CrossRefGoogle Scholar
  92. 92.
    Rosenblum, M.G, Pikovsky, A.S., and Kurths, J., Phase Synchronization of Chaotic Oscillators, Phys. Rev. Lett., 1996, vol. 76, pp. 1804–1807.MATHCrossRefGoogle Scholar
  93. 93.
    Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., and Pogromsky, A.Yu., On Self-Synchronization and Controlled Synchronization, Syst. Control Lett., 1997, vol. 31, pp. 299–305.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Upravlenie mekhatronnymi vibratsionnymi ustanovkami (Control for Mechatronic Vibration Equipment), Blekhman, I.I. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 2001.Google Scholar
  95. 95.
    Blekhman, I.I., Fradkov, A.L., Tomchina, O.P., and Bogdanov, D.E., Self-Synchronization and Controlled Synchronization: General Definition and Example Design, Math. Comput. Simulat., 2002, vol. 58, nos. 4–6, pp. 367–384.MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.Google Scholar
  97. 97.
    French, J., A Formal Theory of Social Power, Psych. Rev., 1956, vol. 63, pp. 181–194.MathSciNetCrossRefGoogle Scholar
  98. 98.
    Harary, F., A Criterion for Unanimily in French’s Theory of Social Power, in Studies in Social Power, Dorwin Cartwright, Ed., Ann Arbor: Univ. of Michigan, 1959, pp. 168–182.Google Scholar
  99. 99.
    Eisenberg, E. and Gale, D., Consensus of Subjective Probabilities: The Pari-Mutuel Method, Ann. Math. Statist., 1959, vol. 30, pp. 165–168.MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    DeGroot, M.H., Reaching a Consensus, J. Am. Statist. Assoc., 1974, vol. 69, no. 345, pp. 118–121.MATHCrossRefGoogle Scholar
  101. 101.
    Reynolds, S., Flocks, Herds, and Schools: A Distributed Behavioral Model, Comput. Graphics, 1987, vol. 21, no. 4, pp. 25–34.CrossRefGoogle Scholar
  102. 102.
    Jadbabaie, A., Lin, J., and Morse, A.S., Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules, IEEE Trans. Autom. Control, 2003, vol. 48, no. 6, pp. 988–1001.MathSciNetCrossRefGoogle Scholar
  103. 103.
    Wieland, P., Sepulchre, R., and Allgower, F., An Internal Model Principle is Necessary and Sufficient for Linear Output Synchronization, Automatica, 2011, vol. 47, pp. 1068–1074.MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Isidori, A., Marconi, L., and Casadei, G., Robust Output Synchronization of a Network of Heterogeneous Nonlinear Agents via Nonlinear Regulation Theory, IEEE Trans. Autom. Control, 2014, vol. 59, no. 10, pp. 2680–2691.MathSciNetCrossRefGoogle Scholar
  105. 105.
    Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform Systems, Autom. Remote Control, 1996, vol. 57, no. 11, pp. 1606–1617.MathSciNetMATHGoogle Scholar
  106. 106.
    Hara, S., Tanaka, H., and Iwasaki, T., Stability Analysis of Systems with Generalized Frequency Variables, IEEE Trans. Autom. Control, 2014, vol. 59, no. 2, pp. 313–326.MathSciNetCrossRefGoogle Scholar
  107. 107.
    Pecora, L.M. and Carroll, T.L., Master Stability Functions for Synchronized Coupled Systems, Phys. Rev. Lett., 1998, vol. 80, pp. 2109–2112.CrossRefGoogle Scholar
  108. 108.
    Tsitsiklis, J.N., Bertsekas, D.P., and Athans, M., Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms, IEEE Trans. Autom. Control, 1986, vol. 31, no. 9, pp. 803–812.MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Hatanaka, T., Chopra, N., Fujita, M., and Spong, M.W., Passivity-Based Control and Estimation in Networked Robotics, New York: Springer-Verlag, 2015.MATHCrossRefGoogle Scholar
  110. 110.
    Arcak, M., Passivity as a Design Tool for Group Coordination, IEEE Trans. Autom. Control, 2007, vol. 52, no. 8, pp. 1380–1390.MathSciNetCrossRefGoogle Scholar
  111. 111.
    Proskurnikov, A., Zhang, F., Cao, M., and Scherpen, J.M.A., A General Criterion for Synchronization of Incrementally Dissipative Nonlinearly Coupled Agents, Proc. Eur. Control Conf. (ECC), 2015, pp. 581–586.Google Scholar
  112. 112.
    Proskurnikov, A.V., Average Consensus in Networks with Nonlinearly Delayed Couplings and Switching Topology, Automatica, 2013, vol. 49, no. 9, pp. 2928–2932.MathSciNetCrossRefGoogle Scholar
  113. 113.
    Proskurnikov, A.V., Delay Robustness of Nonlinear Consensus Protocols: Analytic Criteria, in Recent Results on Time-Delay Systems, Witrant, E., et al., Eds., New York: Springer, 2016, pp. 125–146.CrossRefGoogle Scholar
  114. 114.
    Proskurnikov, A.V. and Shakhova, N.D., Consensus Robustness Against Inner Delays, Electr. Notes Discr. Math., 2016, vol. 51, pp. 7–14.MathSciNetCrossRefGoogle Scholar
  115. 115.
    Ren, W. and Beard, R.W., Consensus Seeking in Multiagent Systems under Dynamically Changing Interaction Topologies, IEEE Trans. Autom. Control, 2005, vol. 50, no. 5, pp. 655–661.MathSciNetCrossRefGoogle Scholar
  116. 116.
    Papachristodoulou, A., Jadbabaie, A., and Münz, U., Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization, IEEE Trans. Autom. Control, 2010, vol. 55, no. 6, pp. 1471–1477.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Matveev, A.S., Novinitsyn, I., and Proskurnikov, A.V., Stability of Continuous-Time Consensus Algorithms for Switching Networks with Bidirectional Interaction, Eur. Control Conf. (ECC), 2013, pp. 1872–1877.Google Scholar
  118. 118.
    Hendricx, J. and Tsitsiklis, J.N., Convergence of Type-Symmetric and Cut-Balanced Consensus Seeking Systems, IEEE Trans. Autom. Control, 2013, vol. 58, no. 1, pp. 214–218.MathSciNetCrossRefGoogle Scholar
  119. 119.
    Moreau, L., Stability of Multiagent Systems with Time-Dependent Communication Links, IEEE Trans. Autom. Control, 2005, vol. 50, no. 2, pp. 169–182.MathSciNetCrossRefGoogle Scholar
  120. 120.
    Agaev, R.P. and Chebotarev, P.Yu., The Matrix of Maximal Outgoing Forests of a Digraph and Its Applications, Autom. Remote Control, 2000, vol. 61, no. 9, pp. 1424–1450.MathSciNetMATHGoogle Scholar
  121. 121.
    Agaev, R. and Chebotarev, P., On the Spectra of Nonsymmetric Laplacian Matrices, Linear Algebra Appl., 2005, vol. 399, pp. 157–168.MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Chebotarev, P. and Agaev, R., The Forest Consensus Theorem, IEEE Trans. Autom. Control, 2014, vol. 59, no. 9, pp. 2475–2479.MathSciNetCrossRefGoogle Scholar
  123. 123.
    Yu, W., Chen, G., and Cao, M., Some Necessary and Sufficient Conditions for Second-Order Consensus in Multi-Agent Dynamical Systems, Automatica, 2010, vol. 46, no. 6, pp. 1089–1095.MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Yu, W., Zheng, W.X., Chen, G., Ren, W., and Cao, J., Second-Order Consensus in Multi-Agent Dynamical Systems with Sampled Position Data, Automatica, 2011, vol. 47, no. 6, pp. 1496–1503.MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Proskurnikov, A., Consensus in Switching Networks with Sectorial Nonlinear Couplings: Absolute Stability Approach, Automatica, 2013, vol. 49, no. 2, pp. 488–495.MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Proskurnikov, A., Nonlinear Consensus Algorithms with Uncertain Couplings, Asian J. Control, 2014, vol. 16, no. 5, pp. 1277–1288.MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Proskurnikov, A.V., Frequency-Domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-Shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Proskurnikov, A.V. and Matveev, A., Popov-Type Criterion for Consensus in Nonlinearly Coupled Networks, IEEE Trans. Cybern., 2015, vol. 45, no. 8, pp. 1537–1548.CrossRefGoogle Scholar
  129. 129.
    Proskurnikov, A.V., Consensus in Nonlinear Stationary Networks with Identical Agents, Autom. Remote Control, 2015, vol. 76, no. 9, pp. 1551–1565.MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Grigoriev, R.O., Cross, M.C., and Schuster, H.G., Pinning Control of Spatiotemporal Chaos, Phys. Rev. Lett., 1997, vol. 79, no. 15, pp. 2795–2798.CrossRefGoogle Scholar
  131. 131.
    Wang, X.F. and Chen, G., Pinning Control of Scale Free Dynamical Networks, Phys. A, 2002, vol. 310, pp. 521–531.MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Li, X., Wang, X.F., and Chen, G., Pinning a Complex Dynamical Network to Its Equilibrium, IEEE Trans. Circuit Syst., I, 2004, vol. 51, no. 10, pp. 2074–2087.MathSciNetGoogle Scholar
  133. 133.
    Cho, A., Scientific Link-Up Yields “Control Panel” for Networks, Sci., 2011, vol. 332, p. 777.CrossRefGoogle Scholar
  134. 134.
    Couzin, I.D., Krause, J., Franks, N.R., and Levin, S.A., Effective Leadership and Decision Making in Animal Groups on the Move, Nature, 2005, vol. 433, p. 513.CrossRefGoogle Scholar
  135. 135.
    Yu, W., Chen, G., and Lü, J., On Pinning Synchronization of Complex Dynamical Networks, Automatica, 2009, vol. 45, no. 2, pp. 429–435.MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Yu, W., Chen, G., Lü, J., and Kurths, J., Synchronization via Pinning Control on General Complex Networks, SIAM J. Control Optim., 2013, vol. 51, no. 2, pp. 1395–1416.MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Cao, Y., Yu, W., Ren, W., and Chen, G., An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination, IEEE Trans. Industr. Inform., 2013, vol. 9, no. 1, pp. 427–438.CrossRefGoogle Scholar
  138. 138.
    Chen, G., Pinning Control and Synchronization on Complex Dynamical Networks, Int. J. Control Autom. Syst., 2014, vol. 12, no. 2, pp. 221–230.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetesrburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations