Advertisement

Automation and Remote Control

, Volume 77, Issue 9, pp 1633–1648 | Cite as

A new effective dynamic program for an investment optimization problem

  • E. R. GafarovEmail author
  • A. Dolgui
  • A. A. Lazarev
  • F. Werner
Control in Social Economic Systems, Medicine, and Biology

Abstract

After a series of publications of T.E. O’Neil et al. (e.g. in 2010), dynamic programming seems to be the most promising way to solve knapsack problems. Some techniques are known to make dynamic programming algorithms (DPA) faster. One of them is the graphical method that deals with piecewise linear Bellman functions. For some problems, it was previously shown that the graphical algorithm has a smaller running time in comparison with the classical DPA and also some other advantages. In this paper, an exact graphical algorithm (GrA) and a fully polynomial-time approximation scheme based on it are presented for an investment optimization problem having the best known running time. The algorithms are based on new Bellman functional equations and a new way of implementing the GrA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, X.M., Fang, S.-C., Tian, Y., and Guo, X.L., Expanded Model of the Project Portfolio Selection Problem with Divisibility, Time Profile Factors and Cardinality Constraints, J. Operat. Res., 2004, doi:10.1057/jors.2014.75.Google Scholar
  2. 2.
    Dolgui, A. and Proth, J-M., Supply Chain Engineering: Useful Methods and Techniques, Berlin: Springer-Verlag, 2010.CrossRefGoogle Scholar
  3. 3.
    Tavana, M., Khalili-Danghani, K., and Abtahi, A.R., A Fuzzy Multidimensional Multiple-Choice Model for Project Portfolio Selection Using an Evolutionary Algorithm, Ann. Operat. Res., 2013, vol. 206, no. 1, pp. 449–483.CrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, P.-T. and Lee, J.-H., A Fuzzy DEA and Knapsack Formulation Integrated Model for Project Selection, Comput. Operat. Res., 2012, vol. 30, pp. 112–125.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beaujon, G.J., Marin, S.P., and McDonald, G.C., Balancing and Optimizing a Portfolio of R&D Projects, Nav. Res. Logist., 2001, vol. 48, pp. 18–40.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mavrotas, G., Diakoulaki, D., and Kourentzis, A., Selection Among Ranked Projects under Segmentation, Policy and Logical Constraints, Eur. J. Operat. Res., 2008, vol. 187, no. 1, pp. 177–192.CrossRefzbMATHGoogle Scholar
  7. 7.
    Herbots, J., Herroelen, W., and Leus, R., Dynamic Order Acceptance and Capacity Planning on a Single Bottleneck Resource, Nav. Res. Logist., 2007, vol. 54, pp. 874–889.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kellerer, H. and Pferschy, U., Improved Dynamic Programming in Connection with a FPTAS for the Knapsack Problem, J. Combinat. Optimiz., 2004, no. 8, pp 5–11.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caprara, A., Kellerer, H., Pferschy, U., and Pisinger, D., Approximation Algorithms for Knapsack Problems with Cardinality Constraints, Eur. J. Operat. Res., 2000, vol. 123, no. 2, pp. 333–345.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mastrolilli, M. and Hutter, M., Hybrid Rounding Techniques for Knapsack Problems, Discr. Appl. Math., 2006, vol. 154, no. 4, pp. 640–649.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bazgan, C., Hugot, H., and Vanderpoorten, D., Implementing an Effcient FPTAS for the 0-1 Multi-Objective Knapsack Problem, Eur. J. Operat. Res., 2009, vol. 198, no. 1, pp. 47–56.CrossRefzbMATHGoogle Scholar
  12. 12.
    Sristava, V. and Bullo, F., Knapsack Problems with Sigmoid Utilities: Approximation Algorithms via Hybrid Optimization, Eur. J. Operat. Res., 2014, vol. 236, no. 2, pp. 488–498.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guler, A., Nuriyev, U.G., Berberler, M.E., and Nurieva, F., Algorithms with Guarantee Value for Knapsack Problems, Optimization, 2012, vol. 61, no. 4, pp. 477–488.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fortin, D. and Tseveendory, I., Piecewise Convex Maximization Approach to Multiknapsack, Optimization, 2009, vol. 58, no. 7, pp. 883–895.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wu, F.L., Yen, Z., Hou, Y.H. and Ni, Y.X., Applications of AITechniques to Generation Planning and Investment, IEEE Power Engineering Society General Meeting, Denver, 2004, 936–940.Google Scholar
  16. 16.
    Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems, Berlin: Springer-Verlag, 2004.CrossRefzbMATHGoogle Scholar
  17. 17.
    McLay, L.A. and Jacobson, S.H., Algorithms for the Bounded Set-up Knapsack Problem, Discr. Optimiz., 2007, vol. 4, pp. 206–412.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shaw, D.X. and Wagelmans, A.P.M., An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs, Manage. Sci., 1998, vol. 44, no. 6, pp. 831–838.CrossRefzbMATHGoogle Scholar
  19. 19.
    Kameshwaran, S. and Narahari, Y., Nonconvex Piecewise Linear Knapsack Problems, Eur. J. Operat. Res., 2009, vol. 192, pp. 56–68.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gafarov, E.R., Dolgui, A., Lazarev, A.A., and Werner, F., A Graphical Approach to Solve an Investment Optimization Problem, J. Math. Model Algor., 2014, vol. 13, no. 4, pp. 597–614.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Posypkin, M.A. and Sigal, I.Kh., Speedup Estimates for Some Variants of the Parallel Implementations of the Branch-and-Bound Method, J. Math. Math. Physics, 2006, vol. 46, no. 12, pp. 2189–2202.MathSciNetGoogle Scholar
  22. 22.
    O’Neil, E.T. and Kerlin, S., A Simple 2O(x) Algorithm for PARTITION and SUBSET SUM, 2010, http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/FCS8171.pdf.Google Scholar
  23. 23.
    Bar-Noy, A., Golin, M.J., and Zhang, Y., Online Dynamic Programming Speedups, J. Theory Comput. Syst., 2009, vol. 45, no 3, pp. 429–445.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Eppstein, D., Galil, Z., and Giancarlo, R., Speeding up Dynamic Programming, Proc. 29th Symp. Found. Comput. Sci., 1988.Google Scholar
  25. 25.
    Wagelmans, A.P.M. and Gerodimos, A.E., Improved Dynamic Programs for Some Batching Problems Involving the Maximum Lateness Criterion, Oper. Res. Lett., 2000, vol. 27, pp. 109–118.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lazarev, A.A. and Werner, F., A Graphical Realization of the Dynamic ProgrammingMethod for Solving NP-hard Problems, Comput. Math. Appl., 2009, vol. 58, no. 4, pp. 619–631.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Aho, A.V., Hopcroft, J.E., and Ullman, J.D., Data Structures and Algorithms, London: Addison-Wesley, 1983.zbMATHGoogle Scholar
  28. 28.
    Chubanov, S., Kovalyov, M.Y., and Pesch, E., An FPTAS for a Single-Item Capacitated Economic Lot-Sizing Problem with Monotone Cost Structure, Math. Program., 2006, vol. 106, pp. 453–466.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gafarov, E.R., Dolgui, A., and Werner, F., A Graphical Approach for Solving Single Machine Scheduling Problems Approximately, Int. J. Production Res., 2014, vol. 52(13), pp. 3762–3777.CrossRefGoogle Scholar
  30. 30.
    Schemeleva, K., Delorme, X., Dolgui, A., et al., Lot-Sizing on a Single Imperfect Machine: ILP Models and FPTAS Extensions, Comput. Indust. Engin., 2013. vol. 65, no. 4, pp. 561–569.CrossRefGoogle Scholar
  31. 31.
    Gafarov, E.R., Lazarev, A.A., and Werner, F., Transforming a Pseudo-Polynomial Algorithm for the Single Machine Total Tardiness Problem into a Polynomial One, Ann. Operat. Res., 2012, vol. 196, pp. 247–261.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. R. Gafarov
    • 1
    Email author
  • A. Dolgui
    • 2
  • A. A. Lazarev
    • 3
    • 4
    • 5
  • F. Werner
    • 6
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Ecole Nationale Supérieure des MinesIRCCYN, UMR CNRS 6597NantesFrance
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Moscow Institute of Physiscs and TechnologyDolgoprudnyRussia
  5. 5.International Laboratory of Decision Choice and Analysis, National Research UniversityHigher School of EconomicsMoscowRussia
  6. 6.Fakultät für MathematikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations