Automation and Remote Control

, Volume 77, Issue 9, pp 1567–1578 | Cite as

Modified backstepping algorithm for nonlinear systems

Nonlinear Systems

Abstract

Based on the backstepping method, this paper proposes a robust control algorithm for nonlinear plants under parametric uncertainty and external bounded disturbances. The algorithm ensures tracking of the plant output to a smooth reference signal with a required accuracy in the steady-state mode. In comparison with the existing analogs, control system implementation requires only one filter of dimension coinciding with the plant relative degree and observers used for calculation of the stabilizing and basic control laws. This feature considerably simplifies the control scheme and calculation of its parameters. And finally, simulation results illustrating the performance of this scheme are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.Google Scholar
  2. 2.
    Khalil, H.K., Nonlinear Systems, New York: Prentice Hall, 2002, 3rd ed.MATHGoogle Scholar
  3. 3.
    Khalil, H.K., Nelileinye sistemy (Nonlinear Systems), Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” Inst. Komp. Issled., 2009.Google Scholar
  4. 4.
    Kokotovic, P.V., The Joy of Feedback: Nonlinear and Adaptive, IEEE Control Syst. Mag., 1992, vol. 12, no. 3, pp. 7–17.CrossRefGoogle Scholar
  5. 5.
    Kanellakopoulos, I., Kokotovic, P.V., and Morse, A.S., Systematic Design of Adaptive Controllers for Feedback Linearizable Systems, IEEE Trans. Automat. Control, 1991, vol. 36, pp. 1241–1253.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kokotovic, P.V., Kanellakopoulos, I., and Morse, A.S., Adaptive Feedback Linearization of Nonlinear System, in Foundation of Adaptive Control, Kokotovic, P.V., Ed., Berlin: Springer-Verlag, 1991, pp. 311–346.CrossRefGoogle Scholar
  7. 7.
    Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with Disturbances Compensation), St. Petersburg: Nauka, 2003.Google Scholar
  8. 8.
    Marino, R. and Tomei, P., Robust Stabilization of Feedback Linearizable Time-varying Uncertain Nonlinear Systems, Automatica, 1993, vol. 29, pp. 181–189.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Freeman, R.A. and Kokotovic, P.V., Design of “Softer” Robust Nonlinear Control Laws, Automatica, 1993, vol. 29, pp. 1435–1437.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Qu, Z., Robust Control of Nonlinear Uncertain Systems under Generalized Matching Condition, Automatica, 1993, vol. 29, pp. 985–998.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zheng, Y. and Yang, Y., Adaptive Output Feedback Control for Class of Nonlinear Systems with Unknown Virtual Control Coefficients Signs, Adaptive Control Signal Process., 2007, vol. 21, no. 1, pp. 77–89.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Furtat, I.B., Modified Algorithm of Integrator Backstepping, Mekhatron. Avtomatiz. Upravlen., 2009, no. 10, pp. 2–7.Google Scholar
  13. 13.
    Furtat, I.B. and Tupichin, E.A., Control of Nonlinear Plant Based on Modified Robust Backstepping Algorithm, Proc. 2014 IEEE Int. Conf. Control Appl. (CCA), Part 2014 IEEE Multi-Conf. Syst. Control, Antibes, France, October 8–10, 2014, pp. 941–946.Google Scholar
  14. 14.
    Furtat, I.B. and Tupichin, E.A., Modified Robust Backstepping Algorithm for Plants with Time Delay, Proc. 6th Int. Congr. Ultra Modern Telecommunications and Control Syst. and Workshops (ICUMT), St.-Petersburg, October 6–8, 2014, pp. 541–545.Google Scholar
  15. 15.
    Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Furtat, I., Fradkov, A., and Tsykunov, A., Robust Synchronization of Linear Dynamical Systems with Compensation of Disturbances, Int. J. Robust Nonlin. Control, 2014, vol. 24, no. 17, pp. 2774–2784.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Furtat, I.B., Robust Control for a Specific Class of Non-Minimum Phase Dynamical Networks, J. Comput. Syst. Sci. Int., 2014, vol. 53, no. 1, pp. 33–46.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Brusin, V.A., On a Class of Singularly Disturbed Adaptive Systems. I, Autom. Remote Control, 1995, vol. 56, no. 4, pp. 552–559.MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations