Automation and Remote Control

, Volume 77, Issue 6, pp 1009–1030 | Cite as

Method of dummy measurements for multiple model estimation of processes in a linear stochastic system

Robust and Adaptive Systems
  • 32 Downloads

Abstract

We consider the estimation problem for the state vector of a linear stochastic discrete system some of whose components are constant parameters with Gaussian distribution and uncertain moments. Hypotheses regarding possible values of these moments are provided together with their prior probabilities. Instead of a classical multiple model solution that constructs Kalman filters for every hypothesis, we propose a less computationally intensive method that lets us compute posterior probabilities and estimate the state vector for individual hypotheses by the results of a single filter augmented with dummy measurements. The value and model of these measurements are defined by the possible values of the constant parameters’ moments. We give examples of rational definition of the dummy measurement model. We compare the computational costs of the proposed approach and the classical one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magill, D.T., Optimal Adaptive Estimation of Sampled Stochastic Processes, IEEE Trans. Automat. Control, 1965, Vol. 10, No. 4, pp. 434–439MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bar-Shalom, Y., Li, X.R., and Kirubarajan, T., Estimation with Applications to Tracking and Navigation, New York: Wiley, 2001.Google Scholar
  3. 3.
    Li, X.R. and Jilkov, V.P., Survey of Maneuvering Target Tracking. Part V: Multiple-model Methods, IEEE Trans. Aerospace Electronic Syst., 2005, Vol. 41, No. 4, pp. 1255–1321.CrossRefGoogle Scholar
  4. 4.
    Teunissen, P.J.G., A New Method for Fast Carrier Phase Ambiguity Estimation, in Proc. Position Location and Navigation Sympos., Las Vegas, Nevada, April 11–15, 1994.Google Scholar
  5. 5.
    Dmitriev, S.P., Koshaev, D.A., and Stepanov, O.A., Multichannel Filtration and Its Application in Removing Ambiguity when Positioning Objects by Using the GPS, J. Comput. Syst. Sci. Int., 1997, Vol. 36, No. 1, pp. 57–62MATHGoogle Scholar
  6. 6.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Applications of the Nonlinear Filtering Theory to Problems of Processing Navigational Information), St. Petersburg: SRC RF CSRT Electropribor, 2003, 3rd ed.Google Scholar
  7. 7.
    Dmitriev, S.P. and Stepanov, O.A., Multialternative Filtration in Processing of Navigational Information, Radiotekhnika, 2004, No. 7, pp. 11–17Google Scholar
  8. 8.
    Fisher, K.A. and Maybeck, P.S., Multiple Model Adaptive Estimation with Filter Spawning, IEEE Trans. Aerospace Electron. Syst., 2002, Vol. 38, No. 3, pp. 755–768CrossRefGoogle Scholar
  9. 9.
    Dmitriev, S.P., Kolesov, N.V., and Osipov, A.V., Informatsionnaya nadezhnost’, kontrol’ i diagnostika informatsionnykh sistem (Informational Reliability, Control, and Diagnostics of Informational Systems), St. Petersburg: SRC RF CSRT Electropribor, 2003.Google Scholar
  10. 10.
    Koshaev, D.A., Kalman Filter-based Multialternative Method for Fault Detection and Estimation, Autom. Remote Control, 2010, Vol. 71, No. 5, pp. 790–802MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Rozenberg, V.L., Dynamic Restoration of the Unknown Function in the Linear Stochastic Differential Equation, Autom. Remote Control, 2007, Vol. 68, No. 11, pp. 1959–1969.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Sysoev, L.P., Estimation of the Matrices of Parameters and Covariations of the Perturbation Vectors in Multidimensional Discrete-time Dynamic Systems under Special Structure of the Unknown Covariance Matrices, Autom. Remote Control, 2010, Vol. 71, No. 2, pp. 352–366MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ignaschenko, E.Yu., Pankov, A.R., and Semenikhin, K.V., Minimax-Statistical Approach to Increasing Reliability of Measurement Information Processing, Autom. Remote Control, 2010, Vol. 71, No. 2, pp. 241–256MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pankov, A.R., Platonov, E.N., and Semenikhin, K.V., Robust Filtering of Process in the Stationary Difference Stochastic System, Autom. Remote Control, 2011, Vol. 72, No. 2, pp. 377–392MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Klimov, A.P., Remizova, O.A., Rudakova, I.V., et al., Sensitivity Reduction to the Effect of Object Model Uncertainty for an H2-optimal System, J. Comput. Syst. Sci. Int., Vol. 49, No. 3, pp. 366–371Google Scholar
  16. 16.
    Kogan, M.M., Optimal Estimation and Filtration under Unknown Covariances of Random Factors, Autom. Remote Control, 2014, Vol. 75, No. 11, pp. 1964–1981.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bellman, R.E., Introduction to Matrix Analysis, New York: McGraw-Hill, 1960. Translated under the title Vvedenie v teoriyu matrits, Moscow: Nauka, 1969.Google Scholar
  18. 18.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Fizmatlit, 2004, 5th ed.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations