Automation and Remote Control

, Volume 77, Issue 3, pp 473–484 | Cite as

Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas

  • D. S. ChivilikhinEmail author
  • V. I. Ulyantsev
  • A. A. Shalyto
Logical Control


We solve the problem of constructing extended finite state machines with execution scenarios and temporal formulas. We propose a new algorithm pstMuACO that combines a scenario filtering procedure, an exact algorithm efsmSAT for constructing finite state machines from execution scenarios based on a reduction to the Boolean satisfiability problem, and a parallel ant colony algorithm pMuACO. Experiments show that constructing several initial solutions for the ant colony algorithm with reduced sets of scenarios significantly reduces the total time needed to find optimal solutions. The proposed algorithm can be used for automated construction of reliable control systems.


Remote Control State Machine Finite State Machine Constraint Satisfaction Problem Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E., Grumberg, O., and Peled, D., Model Checking, Cambridge: MIT Press, 1999.Google Scholar
  2. 2.
    Polikarpova, N.I. and Shalyto, A.A., Avtomatnoe programmirovanie (Automata Programming), St. Petersburg: Piter, 2009.Google Scholar
  3. 3.
    Shalyto, A.A., Algorithmic Graph Schemes and Transition Graphs: Their Use in Software Realization of Logical Control Algorithms. II, Autom. Remote Control, 1996, vol. 57, no. 7, part 2, pp. 1027–1045.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Vel’der, S.E., Lukin, M.A., Shalyto, A.A., et al., Verifikatsiya avtomatnykh programm (Verification of Automata Programs), St. Petersburg: Nauka, 2011.Google Scholar
  5. 5.
    Gold, M., Complexity of Automaton Identification from Given Data, Inf. Control, 1978, vol. 37, no. 3, pp. 302–320.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ul’yantsev, V.I., Applying Method for Solving the Boolean Satisfiability Problem for Constructing Controlling Finite State Machines with Work Scenarios, Bachelor’s Thesis, SPSU IFMO, 2011, available at http://isifmoru/diploma-theses/2011/bachelor/ulyantsev/thesispdf.Google Scholar
  7. 7.
    Luke, S., Essentials of Metaheuristics, Raleigh: Lulu, 2009.Google Scholar
  8. 8.
    Karpenko, A.P., Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi, (Modern Search Optimization Algorithms: Algorithms Inspired by Nature), Moscow: Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, 2014.Google Scholar
  9. 9.
    Kureichik, V.V., Kureichik, V.M., and Rodzin, S.I., Teoriya evolyutsionnykh vychislenii (Theory of Evolutionary Computation), Moscow: Fizmatlit, 2012.Google Scholar
  10. 10.
    Tsarev, F. and Egorov, K., Finite State Machine Induction Using Genetic Algorithm Based on Testing and Model Checking, Proc. 13th Ann. Conf. on Genetic and Evolutionary Computation Companion, New York, 2011, pp. 759–762.Google Scholar
  11. 11.
    Chivilikhin, D. and Ulyantsev, V., MuACOsm: A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines, Proc. 15th Ann. Conf. on Genetic and Evolutionary Computation, New York, 2013, pp. 511–518.Google Scholar
  12. 12.
    Heule, M. and Verwer, S., Exact DFA Identification Using SAT Solvers, Proc. 10th Int. Colloquium Conf. on Grammatical Inference: Theoretical Results and Applications, Berlin, 2010, pp. 66–79.CrossRefGoogle Scholar
  13. 13.
    Ulyantsev, V. and Tsarev, F., Extended Finite-State Machine Induction Using SAT Solver, Proc. 10th Int. Conf. on Machine Learning and Applications, Los Alamitos, 2011, vol. 2, pp. 346–349.Google Scholar
  14. 14.
    Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Combining Exact and Metaheuristic Techniques for Learning Extended Finite-State Machines from Test Scenarios and Temporal Properties, Proc. 13th Int. Conf. on Machine Learning and Applications, Detroit, 2014, pp. 350–355.Google Scholar
  15. 15.
    Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms, Proc. 5th Int. Student Workshop on Bioinspired Optimization Methods and Their Applications, Ljubljana, 2014, pp. 117–126.Google Scholar
  16. 16.
    Chivilikhin, D. and Ulyantsev, V., Inferring Automata-Based Programs from Specification with Mutation-Based Ant Colony Optimization, Proc. 16th Conf. on Genetic and Evolutionary Computation Companion, New York, 2014, pp. 67–68.Google Scholar
  17. 17.
    Egorov, K.V., Generating Controlling Finite State Machines with Genetic Programming and Verification, PhD Dissertation, SPSU IFMO, 2013, available at http://isifmoru/disser/egorov disserpdf.Google Scholar
  18. 18.
    Levenshtein, V.I., Binary Codes Capable of Correcting Deletions, Insertions, and Reversals, Soviet Physics Dokl., 1966 vol. 10, no. 8, pp. 707–710,.MathSciNetGoogle Scholar
  19. 19.
    Baker, J., Reducing Bias and Inefficiency in the Selection Algorithm, Proc. 2nd Int. Conf. on Genetic Algorithms and their Applications, Hillsdale, 1987, pp. 14–21.Google Scholar
  20. 20.
    Dorigo, M., Maniezzo, V., and Colorni, A., Ant System: Optimization by a Colony of Cooperating Agents, IEEE Trans. Systems, Man Cybernetics, 1996, vol. 25, no. 1, pp. 29–41.CrossRefGoogle Scholar
  21. 21.
    Duret-Lutz, A., Manipulating LTL Formulas using SPOT 1.0., in Automated Technology for Verification and Analysis, Lect. Notes in Computer Science, Hung, D. and Ogawa, M., Eds., 2013, vol. 8172, pp. 442–445.zbMATHGoogle Scholar
  22. 22.
    López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., et al., The irace Package, Iterated Race for Automatic Algorithm Configuration, Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, 2011.zbMATHGoogle Scholar
  23. 23.
    Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bull., 1945, vol. 1, no. 6, pp. 80–83.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. S. Chivilikhin
    • 1
    Email author
  • V. I. Ulyantsev
    • 1
  • A. A. Shalyto
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations