Advertisement

Automation and Remote Control

, Volume 77, Issue 1, pp 81–105 | Cite as

Cramér–Rao lower bound in nonlinear filtering problems under noises and measurement errors dependent on estimated parameters

  • O. A. Stepanov
  • V. A. Vasil’ev
Topical Issue

Abstract

This paper derives recurrent expressions for the maximum attainable estimation accuracy calculated using the Cramér–Rao inequality (Cramér–Rao lower bound) in the discretetime nonlinear filtering problem under conditions when generating noises in the state vector and measurement error equations depend on estimated parameters and the state vector incorporates a constant subvector. We establish a connection to similar expressions in the case of no such dependence. An example illustrates application of the obtained algorithms to lowerbound accuracy calculation in a parameter estimation problem often arising in navigation data processing within a model described by the sum of a Wiener sequence and discrete-time white noise of an unknown variance.

Keywords

Remote Control State Vector Particle Filter Nonlinear Filter Parameter Estimation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yarlykov, M.S., Statisticheskaya teoriya radionavigatsii (Statistical Theory of Radio Navigation), Moscow: Radio i Svyaz’, 1985.Google Scholar
  2. 2.
    Yarlykov, M.S. and Mironov, M.A., Markovskaya teoriya otsenivaniya sluchainykh protsessov (Markov Theory of Random Processes Estimation), Moscow: Radio i Svyaz’, 1993.Google Scholar
  3. 3.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory in Navigational Data Processing Problems), St. Petersburg: GNTs RF—TsNII “Elektropribor”, 1998.Google Scholar
  4. 4.
    Dmitriev, S.P. and Stepanov, O.A., Nonlinear Filtering and Navigation, Proc. 5th St. Petersburg Int. Conf. on Integrated Navigation Syst., St. Petersburg, 1998, pp. 138–149.Google Scholar
  5. 5.
    Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, in Linkoping Studies in Science and Technology. Dissertations-no. 579, Department of Electrical Engineering, Linkoping University, SE-581-83, Linkoping, Sweden, 1999.Google Scholar
  6. 6.
    Ivanov, V.M., Stepanov, O.A., and Korenevski, M.L., Monte Carlo Methods for a Special Nonlinear Filtering Problem, Proc. 11th IFAC Int. Workshop Control Applications of Optimization, 2000, vol. 1, pp. 347–353.Google Scholar
  7. 7.
    Doucet, A., de Freitas, N., and Gordon, N., Sequential Monte Carlo Methods in Practice, New York: Springer-Verlag, 2001.CrossRefzbMATHGoogle Scholar
  8. 8.
    Rozov, A.K., Nelineinaya fil’tratsiya signalov (Nonlinear Filtering of Signals), St. Petersburg: Politekhnika, 2002, 2nd ed.Google Scholar
  9. 9.
    Gustafsson, F., Bergman, N., Forssel, U., et al., Particle Filters for Positioning, Navigation and Tracking, IEEE Trans. Signal Process., 2002, vol. 50, no. 2, pp. 425–437.CrossRefGoogle Scholar
  10. 10.
    Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter. Particle Filters for Tracking Applications, London: Artech House, 2004.zbMATHGoogle Scholar
  11. 11.
    Dmitriev, S.P. and Stepanov, O.A., Multiple-alternative Filtering in Navigational Data Processing Problems, Radiotekhn., 2004, no. 7, pp. 11–17.Google Scholar
  12. 12.
    Daum, F., Nonlinear Filters: Beyond the Kalman Filter, IEEE Aerospace Electron. Syst., 2005, vol. 8, pp. 57–71.CrossRefGoogle Scholar
  13. 13.
    Bar-Shalom, Y. and Li, X.R., Estimation and Tracking: Principles, Techniques, and Software, Norwood: Artech House, 1993. Translated under the title Traektornaya obrabotka. Printsipy, sposoby i algoritmy, tom 1–2, Moscow: Gos. Tekhn. Univ. im. Baumana, 2011.Google Scholar
  14. 14.
    Bar-Shalom, Y., Willett, P.K., and Tian, X., Tracking and Data Fusion: A Handbook of Algorithms, Storrs: YBS, 2011.Google Scholar
  15. 15.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 1. Vvedenie v teoriyu otsenivaniya (Foundations of Estimation Theory with Application to Navigation Data Processing Problems. Part 1. An Introduction to Estimation Theory), St. Petersburg: GNTs RF—TsNII “Elektropribor,” ITMO, 2010, 2012.Google Scholar
  16. 16.
    Toropov, A.B. and Stepanov, O.A., Usage of Sequential Monte Carlo Methods in the Correlation- Extremal Navigation Problem, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2010, vol. 53, no. 10, pp. 49–54.Google Scholar
  17. 17.
    Parakhnevich, A.V., Solonar, A.S., and Gorshkov, S.A., Approaches to Significant Probability Density Choice in Particle Filters, Dokl. Beloruss. Gos. Univ. Informatik. Radioelektr., 2012, no. 4 (66), pp. 68–74.Google Scholar
  18. 18.
    Kosachev, I.M., A Methodology of High-Accuracy Nonlinear Filtering of Random Processes in Stochastic Dynamic Fixed-Structure Systems, Vestn. Voenn. Akad. Resp. Belarus’, 2014, no. 4 (66), pp. 125–160.Google Scholar
  19. 19.
    Snyder, C., Bengtsson, T., Bickel, P., et al., Obstacles to High-Dimensional Particle Filtering, Monthly Weather Rev., 2008, vol. 136, no. 12, pp. 4629–4640.CrossRefGoogle Scholar
  20. 20.
    Berkovskii, N.A. and Stepanov, O.A., Error of Calculating the Optimal Bayesian Estimate Using the Monte Carlo Method in Nonlinear Problems, J. Comp. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 342–353.CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946. Translated under the title Matematicheskie metody statistiki, Kolmogorov, A.N., Ed., Moscow: Inostrannaya Literatura, 1948.Google Scholar
  22. 22.
    Van Trees, H.L., Detection, Estimation, and Modulation Theory, Part 1, New York: Wiley, 1968. Translated under the title Teoriya obnaruzheniya, otsenok i modulyatsii. Tom 1. Teoriya obnaruzheniya, otsenok i lineinoi modulyatsii, Moscow: Sovetskoe Radio, 1972.Google Scholar
  23. 23.
    Galdos, J.I., A Cramer–Rao Bound for Multidimensional Discrete–Time Dynamical Systems, IEEE Trans. Automat. Control, 1980, vol. AC-25, no. 1, pp. 117–119.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Koshaev, D.A. and Stepanov, O.A., Application of the Rao–Cramer Inequality in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1997, vol. 36, no. 2, pp. 220–227.zbMATHGoogle Scholar
  25. 25.
    Tichavsky, P., Muravchik, C., and Nehorai, A., Posterior Cramer–Rao Bounds for Discrete–Time Nonlinear Filtering, IEEE Trans. Signal Process., 1998, no. 46, pp. 1386–1398.CrossRefGoogle Scholar
  26. 26.
    Simandl, M., Kralovec, J., and Tichavsky, P., Filtering, Predictive and Smoothing Cramer–Rao Bounds for Discrete–Time Nonlinear Dynamic Systems, Automatica, 2001, no. 37, pp. 1703–1716.CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Van Trees, H.L. and Bell, K.L., Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, San-Francisco: Wiley–IEEE Press, 2007.CrossRefzbMATHGoogle Scholar
  28. 28.
    Stepanov, O.A., Proceeding Cramer–Rao Bounds for Special Nonlinear Filtering Problems, Proc. Eur. Control Conf. ECC’99, Karlsruhe, Germany, 1999.Google Scholar
  29. 29.
    Bergman, N., Poster Cramer–Rao Bounds for Sequential Estimation. See 1999 [7, pp. 321–338].Google Scholar
  30. 30.
    Batista, P., Silvestre, C., and Oliveira, P., Preliminary Results on the Estimation Performance of Single Range Source Localization, Proc. 21st Mediterranean Conf. on Control & Automation, Platanias-Chania, Crete, Greece, 2013, pp. 421–424.Google Scholar
  31. 31.
    Koshaev, D.A., A Comparison of Lower Bounds of Accuracy in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1998, vol. 37, no. 2, pp. 222–224.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Dmitriev, S.P. and Sokolov, A.I., Frequency Shift Estimation in a Doppler Log via Identification of the Received Signal Model, Giroskop. Navigats., 2006, no. 1, pp. 21–29.Google Scholar
  33. 33.
    Stepanov, O.A. and Motorin, A.V., A Comparison of Identification Methods for the Error Models of Sensors Based on Allan Variations and Nonlinear Filtering Algorithms, Mater. 21 Sankt-Peterburg. konf. “Integrirovannye navigatsionnye sistemy” (Proc. 21st St. Petersburg Conf. “Integrated Navigation Systems”), 2014.Google Scholar
  34. 34.
    Stepanov, O.A., Vasilyev, V.A., and Dolnakova, A.S., Cramer–Rao Lower Bound for Parameters of Random Processes in Navigation Data Processing, Proc. 21st Mediterranean Conf. on Control & Automation, Platanias-Chania, Crete, Greece, 2013, pp. 1214–1221.CrossRefGoogle Scholar
  35. 35.
    Stepanov, O.A., Dolnakova, A.S., and Sokolov, A.I., Analysis of Potential Estimation Accuracy of Random Process Parameters in Navigation Data Processing Problems, Tr. XXII Vseross. soveshchan. po problemam upravleniya (Proc. XXII All-Russia Meeting on Control Problems), Moscow: Inst. Probl. Upravlen., 2014, pp. 3730–3740.Google Scholar
  36. 36.
    Stepanov, O.A., Priblizhennye metody analiza potentsial’noi tochnosti v nelineinykh navigatsionnykh zadachakh (Approximate Analysis Methods for Potential Accuracy in Nonlinear Navigation Problems), Leningrad: Tsentr. Nauchno-Issled. Inst. Rumb, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.State Research Center of the Russian Federation JSC Concern CSRI ElektropriborSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations