Automation and Remote Control

, Volume 76, Issue 3, pp 446–457 | Cite as

Robust static control algorithm for linear objects

Robust and Adaptive Systems


We propose a robust static control algorithm for linear objects under parametric and structural uncertainty and an external uncontrollable disturbance. The resulting algorithm ensures that the object output tracks the reference signal with the necessary precision. We give modeling results that illustrate that the algorithm operates correctly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luinberger, D., Observers for Multivariable Systems, IEEE Trans. Automat. Control, 1966, vol. AC-11, no. 2, pp. 190–197.CrossRefGoogle Scholar
  2. 2.
    Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME-J. Basic Eng., 1960, no. 82 (Ser. D), pp. 35–45.Google Scholar
  3. 3.
    Esfandiary, F. and Khalil, H.K., Output Feedback Stabilization of Fully Linearizable Systems, Int. J. Control, 1992, vol. 56, no. 5, pp. 1007–1037.CrossRefGoogle Scholar
  4. 4.
    Bobtsov, A.A., A Robust Control Algorithm for Tracking the Reference Signal, Autom. Remote Control, 2003, vol. 64, no. 6, pp. 943–950.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Slotine, J.J.E., Hedrick, J.K., and Misawa, E.A., On Sliding Observers for Nonlinear Systems, J. Dynam. Syst., Meas., Control, 1987, vol. 109, pp. 245–252.CrossRefMATHGoogle Scholar
  6. 6.
    Utkin, V.I., Sliding-Modes in Control Optimization, Berlin: Springer-Verlag, 1992.CrossRefMATHGoogle Scholar
  7. 7.
    Han, J., A Class of Extended State Observers for Uncertain System, Control Decision, 1995, vol. 10, no. 1, pp. 85–88.Google Scholar
  8. 8.
    Wang, W. and Gao, Z., A Comparison Study of Advanced State Observer Design Techniques, Proc. Am. Control Conf., 2003, pp. 4754–4759.Google Scholar
  9. 9.
    Veluvolu, K.C., Kim, M.Y., and Lee, D., Nonlinear Sliding Mode High-Gain Observers for Fault Estimation, Int. J. Syst. Sci., 2011, vol. 42, no. 7, pp. 1065–1074.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1672–1687.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Letov, A.M., Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow: Nauka, 1969.Google Scholar
  13. 13.
    Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. Analytical Approach to Analysis and Design of the Matrix Systems), Kaluga: Nauchn. Lit. N.F. Bochkarevoi, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations