Automation and Remote Control

, Volume 76, Issue 3, pp 446–457 | Cite as

Robust static control algorithm for linear objects

  • I. B. Furtat
Robust and Adaptive Systems


We propose a robust static control algorithm for linear objects under parametric and structural uncertainty and an external uncontrollable disturbance. The resulting algorithm ensures that the object output tracks the reference signal with the necessary precision. We give modeling results that illustrate that the algorithm operates correctly.


Remote Control Tracking Error Structural Uncertainty Linear Object Object Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luinberger, D., Observers for Multivariable Systems, IEEE Trans. Automat. Control, 1966, vol. AC-11, no. 2, pp. 190–197.CrossRefGoogle Scholar
  2. 2.
    Kalman, R.E., A New Approach to Linear Filtering and Prediction Problems, Trans. ASME-J. Basic Eng., 1960, no. 82 (Ser. D), pp. 35–45.Google Scholar
  3. 3.
    Esfandiary, F. and Khalil, H.K., Output Feedback Stabilization of Fully Linearizable Systems, Int. J. Control, 1992, vol. 56, no. 5, pp. 1007–1037.CrossRefGoogle Scholar
  4. 4.
    Bobtsov, A.A., A Robust Control Algorithm for Tracking the Reference Signal, Autom. Remote Control, 2003, vol. 64, no. 6, pp. 943–950.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Slotine, J.J.E., Hedrick, J.K., and Misawa, E.A., On Sliding Observers for Nonlinear Systems, J. Dynam. Syst., Meas., Control, 1987, vol. 109, pp. 245–252.CrossRefzbMATHGoogle Scholar
  6. 6.
    Utkin, V.I., Sliding-Modes in Control Optimization, Berlin: Springer-Verlag, 1992.CrossRefzbMATHGoogle Scholar
  7. 7.
    Han, J., A Class of Extended State Observers for Uncertain System, Control Decision, 1995, vol. 10, no. 1, pp. 85–88.Google Scholar
  8. 8.
    Wang, W. and Gao, Z., A Comparison Study of Advanced State Observer Design Techniques, Proc. Am. Control Conf., 2003, pp. 4754–4759.Google Scholar
  9. 9.
    Veluvolu, K.C., Kim, M.Y., and Lee, D., Nonlinear Sliding Mode High-Gain Observers for Fault Estimation, Int. J. Syst. Sci., 2011, vol. 42, no. 7, pp. 1065–1074.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1672–1687.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Letov, A.M., Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow: Nauka, 1969.Google Scholar
  13. 13.
    Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. Analytical Approach to Analysis and Design of the Matrix Systems), Kaluga: Nauchn. Lit. N.F. Bochkarevoi, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations