Automation and Remote Control

, Volume 76, Issue 1, pp 16–23 | Cite as

Stabilization of a nonlinear plant with input delay and sinusoidal perturbation

  • A. A. Bobtsov
  • S. A. Kolyubin
  • A. A. Pyrkin
Nonlinear Systems


A new algorithm to stabilize plants with delayed control was proposed. The problem of designing a control algorithm from the measurements of the state variables of a nonlinear system was solved. The problem of designing a stabilizing controller is complicated by the influence of a parametrically undefined sinusoidal perturbing action.


Remote Control Delay System Input Delay Adaptive Observer Nonlinear Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krstic, M., Delay Compensation for Nonlinear, Adaptive and PDE Systems, Berlin: Birkhauser, 2009.CrossRefzbMATHGoogle Scholar
  2. 2.
    Rezvan, V., Absolyutnaya ustoichivost’ avtomaticheskikh sistem s zapazdyvaniem (Absolute Stability of Automatic Delay Systems), Moscow: Nauka, 1983.Google Scholar
  3. 3.
    Tsykunov, A.M., Adaptivnoe upravlenie ob”ektami s posledeistviem (Adaptive Control of Plants with Aftereffect), Moscow: Nauka, 1984.Google Scholar
  4. 4.
    Tsykunov, A.M., Upravlenie ob”ektami s posledeistviem (Control of Plants with Aftereffect), Frunze: Ilim, 1985.Google Scholar
  5. 5.
    Tsykunov, A.M., Adaptivnoe i robastnoe upravlenie dinamicheskimi ob”ektami po vykhodu (Adaptive and Robust Output Control of Dynamic Plants) Moscow: Fizmatlit, 2009.Google Scholar
  6. 6.
    Smith, O.J.M., A Controller to Overcome Dead Time, ISA, 1959, vol. 6, pp. 28–33.Google Scholar
  7. 7.
    Niculescu, S.I. and Annaswamy, A.M., An Adaptive Smith-controller for Time-delay Systems with Relative Degree n ⩽ 2, Syst. Control Lett., 2004, vol. 49, pp. 347–358.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Tsypkin, Ya.Z., Stability of Systems with Delay Feedback, Avtom. Telemekh., 1946, vol. 7, nos. 2–3, pp. 107–129.Google Scholar
  9. 9.
    Bobtsov, A.A., Output Stabilization of Nonlinear Systems under Delay Conditions, J. Comput. Syst. Sci. Int., 2008, vol. 47, no. 2, pp. 179–186.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Solodovnikov, V.V. and Filimonov A.B., Predictive Control of Linear Stationary Plants with Delay, Autom. Remote Control, 1982, vol. 43, no. 11, part 1, pp. 1409–1412.zbMATHGoogle Scholar
  11. 11.
    Parsheva, E.A. and Tsykunov, A.M., Adaptive Control of an Object with a Delayed Control and Scalar Input-Output Signals, Autom. Remote Control, 2001, vol. 62, no. 1, pp. 124–131.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Pyrkin, A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M., Rejection of Sinusoidal Disturbance of Unknown Frequency for Linear System with Input Delay, Am. Control Conf., Baltimore, 2010, pp. 5688–5693.Google Scholar
  13. 13.
    Manitius, A.Z. and Olbrot, A.W., Finite Spectrum Assignment for Systems with Delays, IEEE Trans. Autom. Control, 1979, vol. 24, pp. 541–553.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kwon, W.H. and Pearson, A.E., Feedback Stabilization of Linear Systems with Delayed Control, IEEE Trans. Autom. Control, 1980, vol. 25, pp. 266–269.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Arstein, Z., Linear Systems with Delayed Controls: A Reduction, IEEE Trans. Autom. Control, 1982, vol. 27, pp. 869–879.CrossRefGoogle Scholar
  16. 16.
    Pyrkin, A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M., Output Control Algorithm for Unstable Plant with Input Delay and Cancellation of Unknown Biased Harmonic Disturbance, in Time Delay Syst. Conf., Prague, Czech Republic, 2010, pp. 39–44.Google Scholar
  17. 17.
    Basturk, H.I. and Krstic, M., Adaptive Wave Cancelation by Acceleration Feedback for Ramp-connected Air Cushion-actuated Surface Effect Ships, Automatica, 2013, vol. 49, no. 9, pp. 2591–2602.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Castellanos Silva, A., Landau, I.D., and Airimitoaie, T.-B., Direct Adaptive Rejection of Unknown Timevarying Narrow Band Disturbances Applied to a Benchmark Problem, Eur. J. Control, 2013, vol. 19, pp. 326–336.CrossRefzbMATHGoogle Scholar
  19. 19.
    Marino, R., and Tomei, P., An Adaptive Learning Regulator for Uncertain Minimum Phase Systems with Undermodeled unknown Exosystems, Automatica, 2011, vol. 47, no. 4, pp. 739–747.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Bobtsov, A.A., Kremlev, A.S., and Pyrkin, A.A., Compensation of Harmonic Disturbances in Nonlinear Plants with Parametric and Functional Uncertainty, Autom. Remote Control, 2011, vol. 72, no. 1, pp. 111–118.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Bobtsov, A.A. and Pyrkin, A.A., Cancellation of Unknown Multiharmonic Disturbance for Nonlinear Plant with Input Delay, Int. J. Adapt. Control Signal Proc., 2012, vol. 26, no. 4, pp. 302–315.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Bobtsov, A., Efimov, D., Pyrkin, A., and Zolghadri, A., Switched Algorithm for Frequency Estimation with Noise Rejection, IEEE Trans. Autom. Control, 2012, vol. 57, no. 9, pp. 2400–2404.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Bobtsov
    • 1
  • S. A. Kolyubin
    • 1
  • A. A. Pyrkin
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations