Automation and Remote Control

, Volume 75, Issue 6, pp 1090–1108 | Cite as

Time-and-frequency approach to navigation information processing

  • O. A. Stepanov
  • A. V. Loparev
  • I. B. Chelpanov
Navigation and Control of Moving Systems


The relation between the time-varying optimal algorithms of Kalman filtering and the time-invariant algorithms obtained within the framework of the frequency approach using the approximate method of local approximation of spectral densities was revealed. Introduced was the notion of time-and-frequency approach lying in combined use of the Kalman and frequency approaches, including the method of local approximation. Consideration was given to the examples of processing the navigation information, and the practical importance of the results obtained was discussed.


Transfer Function Spectral Density Remote Control Local Approximation Inertial Navigation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalman, R.E., New Results in Linear Filtering and Prediction Theory, Eng. Trans. ASME, Ser. D, 1961, vol. 83, pp. 95–107.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Gelb, A., Applied Optimal Estimation, Cambridge: MIT Press, 1974.Google Scholar
  3. 3.
    Rivkin, S.S., Ivanovskii, R.I., and Kostrov, A.V., Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical Optimization of Navigation Systems) Leningrad: Sudostroenie, 1976.Google Scholar
  4. 4.
    Dmitriev, S.P., Vysokotochnaya morskaya navigatsiya (High-precision Marine Navigation), Leningrad: Sudostroenie, 1991.Google Scholar
  5. 5.
    Anderson, B.D.O. and Morre, J.B., Kalman Filtering: Whence, What and Whither?, in Mathematical System Theory. The Influence of R.E. Kalman, Berlin: Springer, 1991, pp. 41–54.Google Scholar
  6. 6.
    Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions, New York: Wiley, 1997.zbMATHGoogle Scholar
  7. 7.
    Dmitriev, S.P. and Stepanov, O.A., Noninvariant Algorithms to Process Information of Inertial Navigation Systems, Giroskop. Navigats., 2000, no. 1, pp. 24–38.Google Scholar
  8. 8.
    Grewall, M., Weill, L.R., and Andrews, A.P., Global Positioning Systems, Inertial Navigation, and Integration, New York: Wiley, 2007.CrossRefGoogle Scholar
  9. 9.
    Sovremennye informatsionnye tekhnologii v problemakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern Information Technologies in Navigation and Guidance of Unmanned Maneuvrable Flight Vehicles), Krasil’shchikov, M.N. and Sebryakov, G.G., Eds., Moscow: Nauka, 2009.Google Scholar
  10. 10.
    Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem (Fundamentals of Designing Strapdown Inertial Navigation Systems), St. Petersburg: GNTs RF TsNII “Elektropribor,” 2009.Google Scholar
  11. 11.
    Koshaev, D.A., Kalman Filter-based Multialternative Method for Fault Detection and Estimation, Autom. Remote Control, 2010, vol. 71, no. 5, pp. 790–802.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem, tom 1: Matematicheskie modeli inertsial’noi navigatsii (Mathematical Fundamentals of Inertial Navigation Systems, vol. 1: Mathematical Models of Inertial Navigation), Moscow: Maks Press, 2011.Google Scholar
  13. 13.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii, tom 2: Vvedenie v teoriyu fil’tratsii (Fundamentals of Estimation Theory with Applications to Problems of Navigation Information Processing. vol. 2: Introduction to Filtering Theory), St. Petersburg: GNTs RF TsNII “Elektropribor,” 2012.Google Scholar
  14. 14.
    Kharin, E.G. and Kopylov, I.A., Tekhnologii letnykh ispytanii bortovogo oborudovaniya letatel’nykh apparatov s primeneniem kompleksa bortovykh traektornykh izmerenii (Technologies of Flight Tests of Flight Vehicle On-board Equipment Using System of On-board Trajectory Measurements), Moscow: MAI-Print, 2012.Google Scholar
  15. 15.
    Wiener, N., Extrapolation, Interpolation and Smoothing of Stationary Time Series, with Engineering Applications, New York: Wiley, 1949.zbMATHGoogle Scholar
  16. 16.
    Chelpanov, I.B., Optimal’naya obrabotka signalov v navigatsionnykh sistemakh (Optimal Processing of Signals in Navigation Systems), Moscow: Nauka, 1967.Google Scholar
  17. 17.
    Van Trees, H.L., Detection, Estimation, and Modulation Theory, vol 1: Detection, Estimation and Linear Modulation Theory, New York: Wiley, 1968. Translated under the title Teoriya obnaruzheniya, otsenok i modulyatsii, Moscow: Sovetskoe Radio, 1972.Google Scholar
  18. 18.
    Chelpanov, I.B., Nesenyuk, L.P., and Braginskii, M.V., Raschet kharakteristik navigatsionnykh priborov (Calculation of Characteristics of Navigation Devices), Leningrad: Sudostroenie, 1978.Google Scholar
  19. 19.
    Nesenyuk, L.P., Engineering Approach to Design of Kalman-Wiener Filters, Aviakosm. Priborostr., 2003, no. 11, pp. 37–42.Google Scholar
  20. 20.
    Pamyati professora Nesenyuka L.P. Izbrannye trudy i vospominaniya (In Memory of Prof. Nesenyuk L.P.), Peshekhonov, V.G., et al., Eds., St. Petersburg: GNTs RF TsNII “Elektropribor,” 2010.Google Scholar
  21. 21.
    Loparev, A.V., Stepanov, O.A., and Chelpanov, I.B., Using Frequency Approach to Time-Variant Filtering for Processing of Navigation Information, Giroskop. Navigats., 2012, vol. 3, no. 1, pp. 9–19.Google Scholar
  22. 22.
    Zinenko, V.M., Application of Suboptimal Time-and-Invariant Filters, Giroskop. Navigats., 2012, vol. 3, no. 4, pp. 286–297.Google Scholar
  23. 23.
    Stepanov, O.A., Chelpanov, I.B., and Loparev, A.V., Using Time-Frequency Approach to Solve Non-stationary Navigation Problems, in Materials of Plenary Session of Fifth Russian Multiconf. on Control Problems, St. Petersburg, 2012, pp. 64–80.Google Scholar
  24. 24.
    Ivanovski, R.I., Some Aspects of Development and Application of Stationary Filters to Navigation Systems, Giroskop. Navigats., 2012, vol. 3, no. 1, pp. 1–8.Google Scholar
  25. 25.
    Kurdyukov, A.P. and Poznyak, A.S., Sensitivity of H -functionals to Internal Disturbances in Linear Control Systems, Autom. Remote Control, 1993, vol. 54, no. 4, part 2, pp. 644–652.MathSciNetGoogle Scholar
  26. 26.
    Tupysev, V.A., Stepanov, O.A., Loparev, A.V., et al., Guaranteed Estimation in the Problems of Navigation Information Processing, in 3rd IEEE Multi-Conf. Systems and Control, St. Petersburg, 2009, pp. 1672–1677.Google Scholar
  27. 27.
    Tupysev, V.A., Using Wiener Models for Describing Gyro Drifts and Measurement Errors in INS State Estimation, in 9th St. Petersburg Int. Conf. Integrated Navigation Systems, St. Petersburg, 2002, pp. 250–253.Google Scholar
  28. 28.
    Nebylov, A.V., Ensuring Control Accuracy, Lecture Notes in Control and Information Sciences, vol. 305, Heidelberg: Springer, 2004.zbMATHGoogle Scholar
  29. 29.
    Kulakova, V.I. and Nebylov, A.V., Guaranteed Estimation of Signals with Bounded Variances of Derivatives, Autom. Remote Control, 2008, vol. 69, no. 1, pp. 76–88.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Loparev, A.V., Stepanov, O.A., and Chelpanov, I.B., Relationship between Time-Invariant and Time-Variant Filtering Algorithms for a Class of Problems of Navigation Data Processing, in 51st IEEE Conf. Decision Control, Maui, 2012, pp. 2016–2021.Google Scholar
  31. 31.
    Blazhnov, B.A., Koshaev, D.A., and Stepanov, O.A., Study of Efficiency of Using Satellite Measurements at Measuring Gravitational Acceleration on Flight Vehicle, Giroskop. Navigats., 2002, no. 3, pp. 33–47.Google Scholar
  32. 32.
    Jordan, S.K., Self-Consistent Statistical Models for Gravity Anomaly and Undulation of the Geoid, J. Geophys. Res., 1972, vol. 77, no. 20, pp. 3660–3670.CrossRefGoogle Scholar
  33. 33.
    Loparev, A.V., Stepanov, O.A., and Yashnikova, O.M., On Using Method of Rectifiable Logarithmic Characteristics in Smoothing Problems, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh., Opt., 2012, no. 5, pp. 151–152.Google Scholar
  34. 34.
    Loparev, A.V. and Yashnikova, O.M., Method of Rectifiable Logarithmic Characteristics in Smoothing Problems, in Proc. XIV Conf. “Navigation and Motion Control,” St. Petersburg, 2012, pp. 257–263.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. A. Stepanov
    • 1
    • 2
  • A. V. Loparev
    • 1
    • 2
  • I. B. Chelpanov
    • 1
  1. 1.State Research Center of the Russian Federation Concern CSRI ElektropriborJSCSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations