Automation and Remote Control

, Volume 75, Issue 5, pp 880–899 | Cite as

Control and observation for dynamical queueing networks. II.

  • Yu. V. Solodyannikov
Stochastic Systems, Queueing Systems


We study the optimal control problem in a queueing network under incomplete data. With dynamic programming, we solve the optimal control problem for the network state and observations. We give a general method that can answer what, where, when, and how to measure in the network when solving dynamic routing problems. We define general notions and methods of the theory of network measurement. We give examples of solving joint optimal control and observation problems for elementary network structures and modern telecommunication systems.


Time Slot Remote Control Optimal Control Problem Queue Length Bellman Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Solodyannikov, Yu.V., Control and Observation for Dynamical Queueing Networks. I, Autom. Remote Control, 2014, vol. 75, no. 3, pp. 422–446.CrossRefGoogle Scholar
  2. 2.
    Solodyannikov, Yu.V., Some Problems of Network Measurement, in Theoretical Problems of Computational Networks, Kuibyshev: Kuibysh. Gos. Univ., 1986, pp. 74–102.Google Scholar
  3. 3.
    Solodyannikov, Yu.V., On Statistics of Queueing Systems and Networks, in Stability Problems in Stochastic Models, Proc. X All-Union Seminar, Kuibyshev: Kuibysh. State Univ., 1987, pp. 101–116.Google Scholar
  4. 4.
    Solodyannikov, Yu.V., Certain Statistical Estimates for Network Measurement Problems, in Control and Observation in Computer Communication Networks, Kuibyshev: Kuibysh. Gos. Univ., 1983, pp. 109–137.Google Scholar
  5. 5.
    Eliott, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models. Estimation and Control, New York: Springer-Verlag, 1995.Google Scholar
  6. 6.
    Fleming, W.H. and Rishel, R.W., Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975. Translated under the title Optimal’noe upravlenie determinirovannymi i stokhasticheskimi sistemami, Moscow: Mir, 1978.CrossRefzbMATHGoogle Scholar
  7. 7.
    Joshikawa, T. and Kobajashi, H., Separation of Estimation and Control for Decentralized Stochastic Control Systems, Automatica, 1978, vol. COM-25, no. 1. pp. 95–104.Google Scholar
  8. 8.
    Davis, M.H.A., Linear Estimation and Stochastic Control, London: Chapman, 1977. Translated under the title Lineinoe otsenivanie i stokhasticheskoe upravlenie, Moscow: Nauka, 1984.zbMATHGoogle Scholar
  9. 9.
    Basharin, G.P. and Serebrennikova, N.V., Computing VVH in Cellular Communication Networks while Accounting for the Users’ Mobility, Vestn. Ross. Univ. Druzhby Narodov, Ser. Prikl. Komp. Mat., 2005, vol. 4, no. 1, pp. 11–18.Google Scholar
  10. 10.
    Ershov, V.A. and Kuznetsov, N.A., Mul’tiservisnye telekommunikatsionnye seti (Multiservice Telecommunication Networks), Moscow: Mosk. Gos. Tekhn. Univ., 2003.Google Scholar
  11. 11.
    Krylov, V.V. and Samokhvalova, S.S., Teoriya teletrafika i ee prilozheniya (Theory of Teletraffic and Its Applications), St. Petersburg: BKhV-Peterburg, 2005.Google Scholar
  12. 12.
    Boel, R. and Varaia, P., Optimal Control of Jump Processes, SIAM J. Control Optim., 1977, vol. 15, no. 1, pp. 92–119.CrossRefzbMATHGoogle Scholar
  13. 13.
    Khadzhiev, D.I., On Filtering Semimartingales in Case of Observations over Point Processes, Teor. Veroyat. Primen., 1978, no. 1, pp. 175–184.Google Scholar
  14. 14.
    Miller, A.B., Using Methods of Stochastic Control to Prevent Overloads in Data Transmission Networks, Autom. Remote Control, 2010, vol. 71, no. 9, pp. 1804–1815.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Wang, E. and Hajek, B., Stochastic Processes in Engineering Systems, Berlin: Springer-Verlag, 1985.CrossRefGoogle Scholar
  16. 16.
    Miller, B.M., Avrachenkov, K.E., Stepanyan, K.V., and Miller, G.B., Flow Control as a Stochastic Optimal Control Problem with Incomplete Information, Probl. Inf. Transm., 2005, vol. 41, no. 2, pp. 150–170.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Solodyannikov, Yu.V., On Direct and Inverse Problems of Nonparametric Statistics in Queueing Systems, Izv. Vyssh. Uchebn. Zaved., Mat., 1989, no. 10, pp. 81–84.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.SJC “Samara-Dialog,”SamaraRussia

Personalised recommendations