Automation and Remote Control

, Volume 75, Issue 1, pp 139–151 | Cite as

Adaptive predictor-free control of a plant with delayed input signal

  • I. B. Furtat
Large Scale Systems Control


This paper considers the adaptive control problem for plants with delays in input signals using no predictors and plant’s output measurements only. The proposed algorithm ensures a desired accuracy of plant’s output tracking with respect to a reference signal. Finally, we provide simulation results to illustrate the performance of the algorithm.


Remote Control Reference Model Transient Process Delayed Input Signal Control Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusin, V.A., On a Class of Singularly Perturbed Adaptive Systems, Autom. Remote Control, 1995, vol. 56, no. 4, pp. 552–559.zbMATHMathSciNetGoogle Scholar
  2. 2.
    Guretskii, Kh., Analiz i sintez sistem upravleniya s zapazdyvaniem (Analysis and Design of Control Systems with Time Delay), Moscow: Mashinostroenie, 1973.Google Scholar
  3. 3.
    Kir’yanen, A.I., Ustoichivost’ sistem s posledeistviem i ikh prilozheniya (Stability of Systems with Delay and Their Applications), St. Petersburg: S.-Peterburg. Gos. Univ., 1994.Google Scholar
  4. 4.
    Kolmanovskii, V.B. and Nosov, V.R., Ustoichivost’ i periodicheskie rezhimy reguliruemykh sistem s posledeistviem (Stability and Periodic Modes of the Controlled Systems with Aftereffect), Moscow: Nauka, 1981.Google Scholar
  5. 5.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamical Systems), St. Petersburg: Nauka, 2000.Google Scholar
  6. 6.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  7. 7.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamical Plants), Moscow: Nauka, 1982.Google Scholar
  8. 8.
    Furtat, I.B. and Tsykunov, A.M., Adaptive Control of Objects with Delay on an Exit, Izv. VUZov, Priborostr., 2005, no. 7, pp. 15–19.Google Scholar
  9. 9.
    Furtat, I.B. and Tsykunov, A.M., An Adaptive Control Output Synthesis for the Systems with Delay on the Basis of Modified High Order Algorithm, Pribor. Sist., Upravlen. Kontr. Diagn., 2006, no. 8, pp. 15–17.Google Scholar
  10. 10.
    Tsykunov, A.M., Adaptivnoe i robastnoe upravlenie dinamicheskimi ob”ektami (Adaptive and Robust Control for Dynamic Objects), Moscow: Fizmatlit, 2009.Google Scholar
  11. 11.
    Tsykunov, A.M., Adaptive Control with Compensation of Delay in the Control Action, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2000, no. 4, pp. 78–81.Google Scholar
  12. 12.
    Tsykunov, A.M., A Modified High-order Adaptive Output Feedback Control Algorithm for Linear Plants, Autom. Remote Control, 2006, vol. 67, no. 8, pp. 1311–1321.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Tsykunov, A.M., Algorithm of Robust Control of a Linear Dynamic Plant, Mekhatronika, Avtomatiz., Upravlen., 2008, no. 8, pp. 7–12.Google Scholar
  14. 14.
    Tsypkin, Ya.Z., Optimal Adaptive-Control Systems for Devices Having Delay, Autom. Remote Control, 1986, vol. 47, no. 8, part 1, pp. 1019–1037.zbMATHGoogle Scholar
  15. 15.
    Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1672–1687.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Krstic, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Berlin: Birkhauser, 2009.CrossRefzbMATHGoogle Scholar
  17. 17.
    Lozano, R., Castillio, P., Garcia, P., and Dzul, A., Robust Prediction-based Control for Unstable Delay Systems: Application to the Yaw Control of a Mini-Helicopter, Automatica, 2004, vol. 40, no. 4, pp. 603–612.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Narendra, K.S., Annaswamy, A.M., and Singh, R.P., A General Approach to the Stability Analysis of Adaptive Systems, Int. J. Control, 1985, vol. 41, no. 1, pp. 193–216.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Niculescu, S.I. and Annaswamy, A.M., An Adaptive Smith-Controller for Time-Delay Systems with Relative Degree n ≤ 2, Syst. Control Lett., 2003, vol. 49, no. 5, pp. 347–358.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Smith, J.M., Closer Control of Loops with Dead Time, Chem. Eng. Prog., 1959, no. 53, pp. 217–219.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. B. Furtat
    • 1
    • 2
    • 3
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations